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Preface

The Preface of Strategies a n d  Tactics o f  B ehavioral Research explains our ap
proach to this revision. Strategies a n d  Tactics provides a basic treatm ent of 
the topic suitable for a w ide range of students. In order to do this, certain 
specialized and advanced material covered in the original w ork had to be set 
aside. Points that could be satisfactorily treated in a few paragraphs were moved 
to supplementary boxes. In o ther cases, how ever, the material at issue was 
chapter length but w arranted continued availability. Three such chapters are 
included in Readings fo r  Strategies a n d  Tactics o f  Behavioral Research.

Since writing the first edition, we have also published a num ber of papers 
and chapters concerning behavioral research m ethods. Although these publi
cations are otherwise available, bringing them  together in a single volume al
lows them to augment students’ mastery o f Strategies a n d  Tactics. Further
more, we had accumulated a number of m ethodological papers that had not 
yet been published (or, in som e cases, finished), and these are included to 
broaden the coverage of this volume.

The 13 readings are primarily intended to  serve a supplementary function 
for readers of Strategies a n d  Tactics. Although they are organized under the 
Strategies a n d  Tactics part headings, they cannot by themselves present a co
herent picture of behavioral research m ethods. Furthermore, although each 
reading is related to some chapters in the first volume more directly than to 
others (e.g., the discussion of probability in Reading 5 clearly follows chapter 
5 on dimensional quantities and units), each chapter does not have an associated 
reading, and some readings are directly related to multiple chapters.

Those readings that have already been published have been revised in minor 
ways. Some changes were literary in nature, m ostly breaking up long para
graphs and editing awkward phraseology. Occasionally, a phrase was rew rit
ten to make a poin t more or less conservatively than in the original, although 
we avoided the tempting opportunity to revise arguments. Other changes w ere

ix



X PREFACE

made merely to facilitate their service as supplementary readings. Thus, cita
tions of the original volume have been replaced with references to the appropri
ate chapters of Strategies a n d  Tactics. However, w e did not refer to chapters 
in the first volume at every opportunity , under the assumption that readers 
would already be familiar w ith them  and because such citations w ould have 
been excessive.

Although we intend these readings to serve instructional functions, we have 
not treated them in entirely the same way as Strategies a n d  Tactics’ chapters. 
For instance, we have not provided a detailed outline at the beginning, partly 
because each reading’s headings w ere often not constructed for textbook pur
poses. Neither did w e w rite a study guide for each reading. Readings is more 
likely to be assigned in graduate courses, which may make such study aids less 
necessary or likely to be used. Finally, w e did not compose a Readings glos
sary because it w ould be almost entirely redundant w ith the one in Strategies 
a n d  Tactics.

These readings w ere mostly w ritten  over a period of more than ten years 
as journal articles and chapters for edited books. Collectively, they therefore 
lack the consistency of style, purpose, and integration o f Strategies a n d  Tac
tics chapters. Nevertheless, they are especially valuable supplements to Strate
gies a n d  Tactics because they are thematically consistent w ith the material 
covered. Some provide important background for Strategies an d  Tactics’ chap
ters (e.g., Readings 1, 2, 3, and 7), and others show  how  the fram ew ork ex
plained in the first volum e can be extended to diverse m ethodological issues 
(Readings 4, 5, 6 , 10, 11, and 12). Still others abandon Strategies a n d  Tactics’ 
generally positive tone and openly challenge certain traditional practices or 
conceptualizations (e.g., Readings 8, 9, and 13). Together, these tw o volumes 
provide a coherent and thorough explication of research methods for inves
tigating behavior.

—J. M. Johnston
—H. S. Pennypacker
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R E A D I N G  O N E

Why Behavior Analysis 
is a Natural Science

DISTINCTIONS BETWEEN NATURAL AND SOCIAL SCIENCE

B. F. Skinner viewed the study of behavior as a part of biology (Skinner, 1978, 
chapter 6) and, as such, a natural science. Behavior analysts have always seemed 
fond of this categorization because it helps differentiate their field from 
the social sciences—an association they sometimes find embarrassing. More 
politely, this distinction is generally im portant to behavior analysts because 
the social sciences embody certain conceptual and methodological practices 
that are antithetical to those of behavior analysis.

A distinction between the natural and social sciences is not easily made, 
however, at least not to everyone’s satisfaction. There is a sizeable literature 
concerning the nature of science that ranges from philosophical to sociologi
cal (e.g., Carnap, 1966; Kuhn, 1970; Nagel, 1961; Popper, 1959), but it is im
possible to find a consensus on this point. One distinction that is almost 
colloquial is that the social sciences study hum an affairs (allowing an excep
tion for the study of animal behavior in experimental psychology) at the level 
of the intact organism, and the natural sciences study everything else. This 
bifurcation is so superficial and arbitrary as to be useless, however; it is espe
cially unsatisfying to behavior analysts because it leaves them squarely w ithin 
the social sciences.

More thoughtful examinations of this issue consider formal philosophical/ 
methodological criteria. The nature of scientific theories, falsifiability of con
structs, and countless other such concerns offer potentially w orthy standards, 
but there are at least two difficulties in reaching a clear categorical decision. 
First, scientists simply do not w ork the way that philosophers and sociolo
gists say they work. They do not consider philosophical niceties w hen they 
theorize and reason, for example (see Reading 11). In fact, they just behave 
as everyone else does. Although their formal training as researchers has un

3
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4 READING 1

deniable propaedeutic value, it does not change the fundamental orderliness 
of their behavior as human beings. Second, the variety of methodological prac
tices across all areas of scientific study are enormous, and finding enough con
sistent differences to usefully distinguish between the natural and social sciences 
may be impossible. Almost any practice more or less characteristic o f the so
cial sciences can probably be found in use som ewhere in the natural sciences.

Another approach to  the problem  admits that the variety of m ethodologi
cal practices across all sciences makes a consistent distinction betw een natur
al and social categories unfeasible. Instead, it may be useful to consider m ore 
basic or general features of each putative category that might contribute to 
what could be called a scientific “ style.” Such generalities suffer the usual risks, 
of course, but the arguments may be m ore useful.

For example, at the heart of any science is the way in which its p ractition
ers define its subject matter. Natural scientists are consistent in attending only 
to physical phenom ena—events that are know n or at least strongly suspected 
to exist. Furthermore, they attem pt to explain physical phenom ena only in 
terms of other physical phenom ena. Although philosophers of science w rite 
complicated tomes about such matters, this generality is not difficult to com 
prehend, especially by contrast to the social sciences.

Social scientists study behavior, which is certainly a physical phenom enon. 
Indeed, it may be argued that this is all that is available for study, given that 
the other biological features of organisms are already “ taken” by specialties 
that are generally view ed as natural sciences (biochemistry, physiology, bio
mechanics, neuroscience, etc.). Their approach to behavior as a subject m at
ter requires a more thorough examination, however.

Social scientists often study behavior only as a means to a very different 
end. Behavior is likely to be viewed as an epiphenom enon caused by mental 
events, which are often the real subject matter of interest. Measures of behavior 
are assumed to represent these mental activities, w hich apparently cannot be 
directly measured. In recent years, the same mental activities have also been 
indirectly approached through measures of biochemical and neurological 
events. It takes only passing familiarity w ith psychological or other social scien
tific literatures, how ever, to appreciate that the theoretical underpinning of 
most social science research depends upon a universe of mental phenom ena 
w hose invention is clearly cultural (Skinner, 1971, 1978, chapter 8).

EFFECTS OF A NONPHYSICAL SUBJECT MATTER

Does this justify a categorical distinction between natural and social sciences? 
Are the effects of this difference so im portant as to  require a formal bifurca
tion of scientific activities? After all, natural scientists routinely theorize about 
and study phenom ena that cannot be directly measured, sometimes w ithout 
any certainty that they actually exist. Furthermore, natural scientists view their 
ow n scientific behavior no less mentalistically than their social science col
leagues. The crux of the m atter is not about the use of theoretical constructs

null
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EFFECTS OF A NONPHYSICAL SUBJECT MATTER 5

or indirect measurement, however, or even the researcher’s ability to avoid 
mentalism in how  they conceptualize their ow n behavior. It is about the side 
effects of pursuing a nonphysical subject matter.

Remember that both the subject matters of the natural science and their 
explanations remain w ithin the physical realm, how ever novel or uncertain 
they may sometimes seem. Proposing an extraphysical universe as a source 
of both primary subject m atter and explanation for physical events is unique 
to the social sciences. Because this mental universe is no t bound by any physi
cal laws, it is especially troublesome. It provides an endless source of theories 
about and explanations for behavior that cannot ultimately be falsified.

The consequences of a mental subject m atter in the social sciences are per
vasive and serious. In an effort to build a natural science of behavior that avoid
ed this scourge, Skinner w rote extensively about the effects of mentalism 
in the study of behavior (e.g., 1953, 1974), and others have extended his 
arguments (e.g., Moore, 1981). It is these consequences that collectively con
tribute to a style of social scientific inquiry that may lie at the root of the in
formal but persistent distinction from  the natural sciences that is so widely 
assumed.

For instance, although both natural and social sciences rely on theory to 
summarize and guide research, there is a perceptible difference in the founda
tion upon which theories are constructed. In the natural sciences, theory is 
generally built upon and therefore constrained by pertinent laws, facts, and 
empirical generalizations. Because the natural sciences have amassed a vast body 
of evidence about the way the w orld works, these constraints are consider
able. With a dominant interest in a mental universe, theory in the social sciences 
is more likely to ignore established evidence in favor of the predilections of 
the theorist. If there is contradictory evidence, it is easy to change the theory 
to avoid the problem. Natural science theories also change to accom m odate 
new experimental evidence, but in the social sciences, a style of theorizing 
seems to have evolved in which theories are also free to ignore facts that are 
inconvenient. It is almost as if the theories are m ore im portant than the facts.

Another consequence of a primary interest in a mental subject m atter con
cerns the fact that social scientists frequently measure behavior in ways that 
violate some of its fundamental qualities. It is not that the particular measure
ment techniques are necessarily im proper or unique to the social sciences, but 
that they are unsuitable for the task at hand. As a result, the data may not 
represent all or even any of the fundam ental qualities of behavior, w ith the 
resulting cost to the accuracy and generality of the findings. This fa u x  p a s  
may be more understandable, though no less costly, if one remembers that 
the real interest lies in mental “phenom ena.”

The impact of a nonphysical subject matter on research m ethods and ex
perimental style accumulates quickly. Lacking the availability of falsifiability 
as a touchstone, the social sciences have developed a style of experimental 
design that is notable more for its formality than its functionality. This approach 
is remarkably dependent on inferential statistical design models, in spite of 
increasing evidence that they are often inadequate if not counterproductive.
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6 READING I

The fact that experimental findings are often unsuccessful in describing o r
derly relations among behavioral phenom ena in turn enhances dependence 
on theory.

There is no better evidence in support of these criticisms than the techno
logical track record of each scientific approach. The natural sciences have 
spaw ned technologies that have dramatically transformed the human culture, 
and the pace of technological developm ent only seems to increase. The social 
sciences have yet to offer a single well-developed technology that has had a 
broad impact on daily life. The best that might be proposed is a fledgling be
havioral technology that is actually based on the natural science of behavior 
analysis (Estes, 1979).

Over time, the accumulation of these and other effects of mentalism in the 
social sciences has created a scientific mileau that is represented by a set of 
overarching attitudes about scientific endeavors that stand in stark contrast 
to those of natural scientists. For example, natural scientists seem to take the 
enterprise quite seriously in the sense that experiments are genuine efforts to 
discover new things about nature. Lacking a comparable history of success, 
social scientists may be no less serious but often seem to approach research 
more as a means to a theoretical or extraexperimental end than as the primary 
mechanism of discovery. In the natural sciences, researchers are always seek
ing improved experimental methods, and experimental control is the holy grail 
of this search. In the social sciences, methodological issues are m ore likely to 
be approached by following tradition, and statistical “ con tro l” over the data 
is substituted for control over independent and extraneous variables. In the 
natural sciences, theories are killed on the experimental battlefield, but in the 
social sciences, they die of experimental neglect and old age.

THE AFFILIATION OF BEHAVIOR ANALYSIS

Is the field of behavior analysis a natural science? Yes, in that it scrupulously 
avoids the insidious tem ptations of mentalism in the definition and explana
tion of its subject matter. More generally, it also seems to function more like 
a natural than a social science. Experimentation tends to dom inate theorizing; 
measurement usually respects the characteristics of behavior as a subject m at
ter; experimental methods enhance opportunities for im proved control; and 
experimental design is approached functionally w ith a prim ary interest in dis
covery of natural relations. Behavior analysis has suffered from growing up 
in a social science neighborhood (psychology), however. Its applied “ w ing,” 
for example, has made less progress than it might have because it has been 
driven more by the contingencies of the marketplace than by the needs of a 
science-based technology (Tohnston, 1991, in press).

What is the point of making this categorical distinction between the social 
and natural sciences? An “ us against them ” attitude is unlikely to be produc
tive but it is im portant for behavior analysts to appreciate the place of their 
discipline among the other sciences. Psychology is in the midst of funda

null
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THE AFFILIATION OF BEHAVIOR ANALYSIS 7

mental disciplinary changes and behavior analysts need to have a sound sense 
of the nature of their science and its role in Science. Behavior analysis has al
ways seemed like an orphan or a changeling, being raised by in a hom e w here 
it did not belong. It has worried about its p roper place among the other sciences 
(e.g., Barry, 1986; Epstein, 1984; Fraley & Vargas, 1986; Leighland, 1985; 
Malagodi & Branch, 1985), and the arguments presented here, how ever infor
mal and undocum ented, may help.



R E A D I N G  T W O

The Development of 
Behavioral Research Methods: 
Contributions of B. F. Skinner

INTRODUCTION

The experimental methods of behavior analysis are one of the hallmarks of 
this field. The ways that behavior analysts ask experimental questions, meas
ure behavior, create experimental comparisons, analyze data, and draw  con
clusions are often strikingly different from those exemplified in most 
psychological research, although they share many features w ith methods used 
in the natural sciences. In fact, these differences underlie, not only the develop
ment of behavior analytic journals (Dews, 1987; Herrnstein, 1987; Skinner, 
1959), but the resulting citation patterns (Krantz, 1971).

The origins and rationale of this approach may be unfamiliar to those w ho 
are no t trained in this field. These methods emerged from natural science tra
ditions that predated Skinner’s contributions (for example, see Bernard, 
1865/1957). However, his creative laboratory research transform ed unclear 
and uncoordinated m ethodological practices into a coherent set of strategies 
and tactics for studying behavior. These were eventually elaborated by Sid- 
m an’s volume, Tactics o f  Scientific Research (I960).

The rationale for these experimental methods stems from  tw o converging 
influences on Skinner’s work. First, he viewed the study of behavior as a natural 
science and he adopted a set of scientific values that had long been productive 
in the natural sciences. Second, Skinner approached his research in the con
text o f a set of facts, empirical generalizations, and assumptions about the na
ture and workings of behavior. These influences are detailed in a later section 
but it should be noted that the defense of the resulting research practices is 
more empirical than rational. The use of these practices by Skinner and his 
students has evolved and persisted because these m ethods are effective at 
describing the relations betw een environmental variables and behavior. This 
paper focuses on (a) how  these methods developed in the w ork of Skinner

8

ana_n
Realce
método da ac se diferencia de outras abordagens da psicologia e se aproxima das ciências naturais

ana_n
Realce

ana_n
Sublinhado

ana_n
Sublinhado

ana_n
Sublinhado

ana_n
Sublinhado

ana_n
Sublinhado

ana_n
Realce

ana_n
Sublinhado

ana_n
Realce

ana_n
Realce
objetivo do capítulo



ORIGINS 9

and his colleagues, (b) how  they are related to our understanding o f behavior, 
and (c) how  they collectively constitute a set of attitudes about the scientific 
study of behavior.

ORIGINS

Many of the investigations of behavioral phenom ena in the late 19th century 
might be called preexperimental. Even as behavioral research became m ore 
formal and systematic during the early 20th century, how ever, there was no 
distinctive approach to measuring behavior, arranging comparisons betw een 
control and experimental conditions, and drawing conclusions that dom inat
ed experimentation. Researchers usually follow ed the lead of predecessors in 
their specialty, incorporating variations o f their ow n as necessary. Although 
the influence of inferential statistics was grow ing rapidly, Fisher had not yet 
published his seminal work, The Design o f  Experim ents (1935)-

This was the situation v^hen Skinner arrived at Harvard for graduate study 
in the fall o f 1928. As chronicled in the second volum e of his autobiography 
(Skinner, 1979), his exposure to the psychological traditions of the day was 
thorough. Nevertheless, he grew increasingly interested in studying the be
havior of the intact organism for its ow n sake, instead of for w hat it might 
reveal about hypothetical inner processes.

Skinner described his earliest experim ental activities and their impact on 
him in a paper he w rote for a meeting o f the Eastern Psychological Associa
tion in 1955, which was published in the A m erican Psychologist in 1956. It 
was eventually reprinted in Psychology: A S tudy o f  a  Science, Vol. II, edited 
by Sigmund Koch, and then again in Skinner’s C um ulative Record (1959). “A 
Case History of Experimental M ethod” provides a strikingly informal (the 
figures and diagrams are hand drawn) and revealing picture of Skinner’s think
ing as he moved from one curiosity and handm ade apparatus to another. The 
paper is personal and almost casually iconoclastic, while showing the first ex
perimental steps of one of psychology’s most influential scientists and scholars.

In the paper, he outlined and exemplified a number o f “principles” he dis
covered that are not formally recognized by scientific methodologists:

1. “W hen you run onto something interesting, drop everything else and 
study it” (p. 81).

2. “ Some ways of doing research are easier than o thers” (p. 82).
3. “ Some people are lucky” (p. 85).
4. “Apparatuses sometimes break d ow n” (p. 86).
5- “ Serendipity—the art of finding one thing while looking for som ething 

else” (1959, p. 88).

His examples of these principles in his research describe his invention, dis
covery, development, or emphasis o f free operant procedures, the operant
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10 READING 2

chamber, the cumulative recorder, experimental control, schedules of rein
forcement, steady state responding, and within subject comparisons.

UNDERLYING CONVICTIONS

Skinner’s ground-breaking, early research was summarized in The Behavior 
o f  Organisms (1938). As his career as a researcher and teacher flourished, the 
experimental style so charmingly described in “A Case H istory” became the 
m odus operandi for an entire field. Sidman’s influential book (I960) facilitat
ed this development by helping to insure that the next generation of behavioral 
researchers would understand w hat had become some of the defining features 
of behavior analysis.

The natural scientific values that Skinner learned from his study of biology 
in particular that are evident in his research may be summarized as follows:

1. Experimental questions should ask about the subject matter and the vari
ables that influence it (rather than about theory).

2. Variability in the data is a measure of the degree of experim ental con
trol achieved.

3. The value of the data is directly related to the degree of experimental 
control achieved.

4. Generality emerges from understanding controlling variables.
5. Experimental methods must be adapted to the characteristics of the sub

ject matter.

W hether based on established facts, empirical generalizations, or assump
tions, the convictions about behavior that guided Skinner’s experimental tac
tics include the following:

1. Behavior is an im portant subject matter in its own right.
2. Behavior is a phenom enon that results from interactions betw een in

dividual organisms and their environments.
3. B ehavior-environm ent interactions occur through time.
4. The natural unit of behavior analysis is the response class.
5. The model that best describes behavior is the three-term contingency.
6 . Behavior is orderly w hen controlling variables are properly managed.
7. The experim enter’s behavior must be viewed and managed in the same 

way as the subject’s behavior.

One principle pervaded Skinner’s experimental efforts more thoroughly than 
any others. He was unfailing in his respect for and relentless in Skinner’s pur
suit of orderly data. This is especially clear in “ A Case H istory,” where he
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FOUNDATION FOR BEHAVIOR ANALYTIC METHODS 11

reports how  his decisions to invent or modify a piece of apparatus, control 
a variable, create a certain procedure, or analyze data were guided by evidence 
of, or at least the possibility of, more orderly data. He was even clear in his 
credit: “ I had the clue from Pavlovr contro l your conditions and you will see 
o rder” (Skinner, 1959, p. 80). W hen this invaluable methodological touch
stone is combined w ith a clear sense of the m ethodological needs o f the sub
ject matter, it will eventually lead an investigator to discover effective 
experimental methods, which is exactly w hat Skinner did.

FOUNDATION FOR BEHAVIOR ANALYTIC METHODS 

E xperim ental Q uestions ^

These underlying convictions of Skinner and his intellectual progeny collec
tively provide a foundation for the defining features of behavior analytic 
research methods. (Description of a coherent and convincing rationale for these 
tactics is well beyond the scope of this paper, however.) For example, the most 
consistent feature of behavior analytic experim ental questions is, not surpris
ingly, that their primary interest is in behavior for its ow n sake. They also tend 
to focus on a particular response class (or classes) and the environm ental vari
ables that might influence it. Typical phraseology takes the form, “ What are 
the relations between Response Class X  and Variable F?” or “ W hat are the 
effects of Variable Y on Response Class X V ' This phraseology signals that their 
interest in the relations betw een particular pieces of behavior and environ
ment is usually fairly open-ended. Instead o f presupposing what will be found 
by stating formal hypotheses, they remain open to w hatever might be revealed 
by the data. This experimental approach is far from purely inductive, however, 
and behavioral researchers usually have reasoned guesses about w hat might 
happen and why. However, its emphasis is more on asking questions about 
behavior than making theory driven predictions.

This approach to asking experimental questions is based on the conviction 
that behavior is an appropriate subject m atter for investigation, not as an 
epiphenom cnon, but in its ow n right. The focus on particular response class
es comes from understanding that this is the natural unit of analysis for the 
study of behavior. The interest in learning about how  certain environmental 
variables may influence the response class lies in the belief that behavior is 
largely the result of environmental variables. The construction of questions 
that ask about behavior w ithout formally forecasting possible or preferred 
results is based on the realization that the question is part of the set of contin
gencies that control the experimenter’s behavior. Questions that ask more about 
nature rather than theory encourage the investigator to design and conduct 
a study that is not biased tow ard a certain outcom e but open to w hatever can 
be discovered about behavior.
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B ehavioral M easurem ent

There are a num ber of characteristics of behavioral measurement that have 
come to distinguish this methodological approach. As suggested by the focus 
of experimental questions, w hat is measured are response classes defined in 
functional terms, rather than broad categories of possibly different behaviors 
based on colloquial labels. In laboratory research, response classes are likely 
to be created by contingencies designed to assure that exactly the same be
havior is measured for each subject. In applied research in w hich there may 
be no choice about the target behavior, the researcher at least attempts to de
fine the response class functionally, rather than topographically, to  assure con
sistency in controlling variables across subjects.

In addition to accom modating the literature describing the way behavior 
seems to  be organized, these definitional practices attem pt to assure that vari
ability in the data does not reflect the effects of experimental variables on a mix
ture of different response classes, which may have differing sources of control. 
Measurement of distinct response classes also encourages the investigator to be 
cautious about extending interpretations to response classes that were not 
studied.

Following the natural science practice of dimensional measurement, it is 
not the response class that is actually measured but certain dimensional quan
tities of it, which are quantified in terms of standard and absolute units of meas
urem ent w ith as m uch precision as possible. By helping to obtain accurate 
measures of responding, this tactic decreases the likelihood of variability result
ing from imprecise measurement.

W hether detection and recording of the occurrence of the defined response 
classes is accomplished by equipment or human observers, measurement most 
often involves counting or timing individual responses. Because the result
ing data represent the events of inferential interest, the question of the data’s 
validity is avoided, leaving only accuracy to be assessed. This kind of ob
servational approach minimizes variability contributed by the observational 
process.

One of the m ost notable features of the approach to behavioral measure
m ent that Skinner developed concerns the practice of measuring the targeted 
response class repeatedly under each experimental condition. This usually in
volves both sampling behavior for extended periods on each occasion, as well 
as repeating such sessions many times in succession for each condition. This 
practice accommodates the observed fact that the effects of environmental vari
ables on behavior occur over time. Obtaining a clear picture of behavior change 
therefore requires sampling thoroughly over time. Furtherm ore, this tactic is 
a prerequisite to  achieving a high degree of experim ental control.

Finally, all of these measurement practices are im plem ented individually 
for each subject in a study. This means that at least some decisions may be 
m ade separately for each subject, such as the details of response class defini
tion or the timing of observation periods. However, the most revered tactic 
is separately observing and recording each subject’s behavior. In fact, the data
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FOUNDATION FOR BEHAVIOR ANALYTIC METHODS 13

are usually retained in individual form  throughout at least the initial, if not 
all stages of analysis.

Skinner was quite clear about the im portance of collecting and maintaining 
individual data, which, even in the early 1930s, contrasted w ith prevailing 
traditions. The biological fact that behavior is an intraorganism phenom enon 
requires this approach, and Skinner found it revealing in his earliest experimen
tal efforts. The goal of orderly data that guided his research tactics was clearly 
served by this practice and generations of behavior analysts have discovered 
that this result encourages attending to extraneous influences and identifying 
reliable and general experimental effects.

Experim ental “ D esign ”

For Skinner, experim entation was an evolving process of exploration: “ . . . 
science does not progress by carefully designed steps called ‘experiments’ each 
of which has a well-defined beginning and end. Science is a continuous and 
often a disorderly and accidental process” (1959, p. 98). His research exem
plified this opinion, and he observed, “ If I engaged in Experimental Design 
at all, it was simply to complete or extend some evidence of order already 
observed” (1959, p. 89). He was primarily concerned with discovering how  
environmental variables influenced the behavior of individual organisms, no t
ing, “ So far as I can see, I began simply by looking for lawful process in the 
behavior of the intact organism ” ( 1959, p. 80).

His methods yielded orderly behavioral data that w ere usually unmistak
ably clear in their message w ithout m athematical processing required by 
elaborate interpretive rules. W hen data w ere too variable or changes too sub
tle for unambiguous analysis, his solution was to  continue searching for ways 
to improve control over independent or extraneous variables rather than to 
force a conclusion that he saw as prem ature. The static conception of ex
perimental design that was becoming popular seemed to him to interfere w ith 
what was a dynamic process that, w hen properly done, needed little or no 
statistical assistance.

This approach to experimental design begins w ith the collection of repeat
ed measures of each subject’s perform ance under each condition. This facili
tates a concentrated effort to establish a high degree of experimental control. 
The orderliness of the data under each supposedly constant condition is a met
ric of the experim enter’s control over relevant variables, and this is therefore 
an occasion for taking w hatever steps are necessary to augment such control. 
Skinner simply said, “ I never faced a Problem w hich was more than the eter
nal problem of finding o rder” (1959, p. 88).

Determining how many observations are needed under each condition is 
an instance of the steady state strategy. Each subject is exposed to a condition 
until stable data can be produced, w hich usually requires different numbers 
of sessions for each subject. Stability is defined, both  by general standards, 
as well as by criteria that are specific to the experim ent and the individual
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subject. The goal is to generate, not just orderly data, but data that represent 
the full effects of each condition on the behavior o f each subject.

Skinner mentioned that he learned about steady states from physical chemis
try (1959, p. 87), and he saw them  as fundam ental to the study of behavior. 
They provide the investigator w ith an unhurried opportunity to obtain a satis
factory level of variability, w hich often requires an active effort to im prove 
experimental control rather than merely waiting until stability emerges. In the 
process, the data create an evolving and eventually complete picture of the 
effects of a condition, usually giving the investigator a choice of effects to con
sider. Although attaining stable responding can take some time to accomplish, 
there is no better way to gather orderly data that represent the effects of each 
condition on the behavior of individual subjects.

For Skinner, the essence of design—the comparison of control and ex
perimental conditions—had to be conducted separately for each subject. Not 
only did his conception of behavior as a subject m atter require this approach, 
his early experiences described in “ A Case H istory” show ed him that this tac
tic provided a clearer picture of the effects of experimental variables than could 
be obtained by collating data across individuals in some manner. He em pha
sized this point repeatedly in “A Case H istory,” as well as in other observa
tions on research method.

Not only does this alternative avoid mixing variability resulting from the 
treatm ent w ith intersubject variability, it again encourages the investigator to 
focus on variable data and address its causes. Excessive variability in individu
al data serves as a prom pt for locating and controlling its sources, instead of 
for grouping data across individuals and resorting to statistical procedures that 
use variability as a metric of the size of the difference betw een conditions. 
Skinner (1959) made this priority clear in the following example:

Suppose that measurements have been made on two groups of subjects differing 
in some detail of experimental treatment. Means and standard deviations for the 
two groups are determined, and any difference due to the treatment is evaluat
ed. If the difference is in the expected direction but is not statistically signifi
cant, the almost universal recommendation would be to study larger groups. But 
our experience with practical control suggests that we may reduce the trouble
some variability by changing the conditions of the experiment. By discovering, 
elaborating, and fully exploiting every relevant variable, we may eliminate in ad
vance o f measurement the individual differences which obscure the difference 
under analysis. This will achieve the same result as increasing the size of groups, 
and it will almost certainly yield a bonus in the discovery of new variables which 
would not have been identified in the statistical treatment, (p. 91)

His reference to “ practical contro l” concerns his observation that in ap
plied situations we have little choice but to identify and control the factors 
that will produce the desired behavior change in a particular individual. He 
observed:

When you have the responsibility of making absolutely sure that a given organ
ism will engage in a given sort of behavior at a given time, you quickly grow
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FOUNDATION FOR BKHAVIOR ANALYTIC METHODS 15

impatient with theories of learning. Principles, hypotheses, theorems, satisfac
tory proof at the .05 level of significance that behavior at a choice point shows 
the effect of secondary reinforcement—nothing could be more irrelevant. No one 
goes to the circus to see the average dog jump through a hoop significantly oftener 
than untrained dogs raised under the same circumstances or to see an elephant 
demonstrate a principle of behavior. (1959, p. 90)

He proposed that researchers take the same approach in controlling the be
havior of their subjects in order to see the effects of experim ental variables.

Data A nalysis and Interpretation

Skinner (1959) found the increasingly popular statistical conception of data 
analysis both unnecessary and harmful. He wrote:

. . .  it is a mistake to identify scientific practice with the formalized construc
tions of statistics and scientific method. These disciplines have their place, but 
it does not coincide with the place of scientific research. They offer a method 
of science but not, as is so often implied, the method. As formal disciplines they 
arose very late in the history of science, and most of the facts of science have 
been discovered without their aid. It takes a great deal of skill to fit Faraday with 
his wires and magnets into the picture which statistics gives us of scientific think
ing. And most current scientific practice would be equally refractory, especially 
in the important initial stages. It is no wonder that the laboratory scientist is puz
zled and often dismayed when he discovers how his behavior has been recon
structed in the formal analyses of scientific method. He is likely to protest that 
this is not at all a fair representation of what he does. (p. 78)

Instead, Skinner simply examined the data from control and experimental 
conditions individually for each subject, and his persistent pursuit of ex
perimental control meant that these data w ere sufficiently orderly to facilitate 
meaningful interpretation.

If Skinner had a “m ethod” of data analysis, it could be called graphical. 
The data he analyzed were usually displayed in the form of cumulative records. 
Even in the computer age, the standard cumulative recorders are still a com 
mon adjunct to data handling software and graphics packages, although their 
role is often limited to m onitoring session activity. W hether in laboratory or 
applied research, however, the overwhelm ingly dom inant approach to data 
handling remains graphical, as it is in many o ther natural sciences (see Iver
son, 1988 for discussion of the growing appreciation of this approach). Descrip
tive statistics are often useful supplem entary aids, but graphic displays of 
individual data in the temporal sequence of their occurrence are the first ana
lytical priority. This should not suggest, how ever, that quantitative analytical 
procedures, including inferential statistics, do not have a well-earned place 
among a behavioral researcher’s tools.

To those primarily accustomed to inferential statistical procedures, graphi
cal analysis of data may seem unacceptably flexible or even casual; to those
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trained in these m ethods, however, it encourages attention to the relations 
of interest while providing demanding limits on interpretation. More to the 
point, graphic analysis o f individual subject data helps to bring the investiga
to r’s behavior under control of the subject matter in ways that lead to accurate 
and general inferences.

Skinner was struck by how  clearly relationships could be seen in graphed, 
individual data, w hich was exactly w hat he w anted to see. He noted, “The 
organism w hose behavior is most extensively modified and m ost completely 
controlled in research of the sort I have described is the experim enter him 
self” (1959, p. 98). He was concerned that the outcom e of inferential statisti
cal techniques created a picture of the data that was unlikely to control the 
investigator’s reactions in the same way as graphs of individual subject data 
(also see Michael, 1974).

Finally, Skinner’s approach to generality is implicit in his focus on the in
dividual: “ We are w ithin reach of a science o f the individual. This will be 
achieved . . . through an increasing grasp of relevant conditions to produce 
order in the individual case” (1959, p- 95). He understood that generality did 
not come from increasing the size of experimental and control groups, but 
from identifying and understanding the role of variables that influenced the 
relations in question for each subject. His methodological practices were there
fore shaped by successive approximations to order at this level of description 
and analysis.

A ttitudes o f  S cien tific  D iscovery

These various strategies, tactics, and their rationales may also be collectively 
described as a set of attitudes about the scientific study o f behavior. These at
titudes w ere evident in Skinner’s research and writing, as they are today in 
the w ork of many behavioral researchers. For instance, one such attitude is 
the optimistic conviction that behavior can be studied w ith appropriate ex
perim ental m ethods as successfully as can other natural phenom ena. This atti
tude holds that this subject m atter and its influences are no m ore com plex or 
resistent to analysis and understanding than o ther natural phenom ena.

Another scientific attitude is that control is everything. W hatever the 
m ethods required by a behavior in an experiment, it is difficult to give too 
m uch attention to controlling variables (w hether extraneous or independent) 
that have or might have some influence on the dependent variable. Control 
provides clarity, and a corollary view is that nothing can substitute for achieving 
high levels of experim ental control. More im portantly, control implies an un
derstanding of the variables that “ cause” the behavior.

With this approach to control, a related attitude is that variability is a w in
dow  through w hich w e can see how  behavior works. Variability in behavior 
either shows us w hat we need to control (extraneous variables) or the fruits 
o f successful control (independent variables). We want to do everything we 
can to see behavioral variability more clearly. W hen we are successful, the only
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FOUNDATION FOR BEHAVIOR ANALYTIC METHODS 17

variability we see is that which w e have induced by manipulating independ
ent variables, and this helps answer the experim ental question.

Perhaps the most overarching attitude is that our scientific m ethods must 
always respect and accommodate the subject m atter. To be effective, our be
havior as scientists must come largely under control o f our subject matter, 
which is one of Skinner’s most im portant scientific achievements. This is why 
he ended A Case History by saying:

We have no more reason to say that all psychologists should behave as I have 
behaved than that they should all behave like R. A. Fisher. The scientist, like any 
organism, is the product of a unique history. The practices which he finds most 
appropriate will depend in part upon this history. . . . When we have at last an 
adequate empirical account of the behavior of Man Thinking, we shall under
stand all this. Until then, it may be best not to try to fit all scientists into any 
single mold. (1959, pp. 99-100)
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R E A D I N G  T H R E E

Traditions of 
Behavioral Measurement

INTRODUCTION

Measurement is the cornerstone of all scientific activity. The history of science 
is coextensive with the history of measurem ent of natural phenom ena because 
without measurement, science is indistinguishable from naturalistic philosophy. 
To the extent that natural phenom ena yield to measurement, they are removed 
from the domain of philosophical discourse and emerge as the subject matter 
of scientific inquiry.

Scientific measurement of natural phenom ena involves quantification of ob
servations with respect to a reference scale defined by units that are both ab
solute and standard. The absolute and standard character of measurement units 
is im portant in assessing contem porary research strategies.

One can readily trace the history of science in terms of the history of 
the invention and application of units o f measurement. The history of 
mathematics is closely related to this history, which may be view ed as a sys
tem of rules for combining and m anipulating the results of quantified obser
vations. Science and mathematics have therefore developed in a m ore or less 
symbiotic fashion.

This reading begins by tracing the developm ent of measurement in science 
to the end of the 19th century. Our purpose is to convey the richness and con
tinuity of the measurement tradition that has since been adapted to the needs 
of a natural science of behavior. This preparation also enables us to contrast 
these traditions with measurement traditions common in the social sciences. 
The result will be a clear picture of two fundam entally different approaches 
to the problem of behavioral measurem ent and their distinct and pervasive 
implications for other methodological practices.

21
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EARLY HISTORY OF SCIENTIFIC MEASUREMENT 

M easurem ent P rior to  the 17th Century

The earliest records of scientific measurement date from around 3000 B.C. and 
are found in the rem ains of the Sumerian civilization of the Tigres-Euphrates 
Valley (Mason, 1953). This culture left cuneiform records indicating the de
velopm ent of a num ber system and a modest algebra, w hich perm itted them 
to perform  the physical calculations necessary for surveying and building. The 
Sumerians had apparently both developed the concept of number and applied 
it to the dim ensional quantification of length.

From the Egyptian and Babylonian civilizations, w e observe the beginnings 
of the measurement of time, which is coincidental to the origins of the science 
of astronomy. The Egyptians, for example, developed the calendar and decimal 
num ber system, and around 2000 B.C., the Babylonians developed the 7-day 
week, as well as our present system of days, hours, and seconds as units o f time.

Refinements in measuring space and time w ere the principal contributions 
to measurement m ade by the ancient Greeks. Their major scientific contribu
tion appears to have been in the collateral areas of astronom y and geometry. 
Hipparchus (ca. 130 B.C.) combined Babylonian observation procedures with 
Greek geometry to produce the basic system of astronomy, which, as later codi
fied by Ptolemy, survived until the 16th century. Hipparchus also invented the 
practice of representing points on the earth’s surface by geometric coordinates, 
the foundation of D escartes’ analytic geometry. Both Archimedes and Euclid 
are know n to have used the degree as the unit for measuring angles, and Eu
clid’s geometry rem ains as an elegant example of a formal mathematical sys
tem that is valid both logically and empirically.

Historians do no t regard the Middle Ages as a period of great advancement 
in either science or mathematics. Nevertheless, further refinement of the tech
niques of measuring physical distance facilitated major advances in the tech
nology of navigation, w hich spawned the Age of Exploration. The essential 
phenom ena of magnetism had been discovered by the 13th century, so that 
voyagers such as Columbus and Magellan were able to navigate w ith the aid 
o f a magnetic compass.

The Medieval period is best remembered for the contributions of a handful 
of natural philosophers, notably Roger Bacon, Robert Grosseteste, and Nicolaus 
Copernicus. The questioning of certain fundam ental assumptions by Coperni
cus concerning the arrangem ent of the heavens paved the way for the explo
sion of scientific inquiry that began in the late 16th and early 17th centuries 
w ith Galileo. It is im portant to note that Bacon and Grosseteste began inquiry 
into the nature of light and, in the process, pioneered the earliest technology 
of optics (Crombie, 1961). Bacon, moreover, was among the first to speak of 
“ laws of natu re” and to suggest the possibility of describing such laws m athe
matically. It had previously been customary, in the wake of Aristotelian 
philosophy, to regard both the physical w orld and mathematical systems as 
logical ideals to be contem plated. Roger Bacon’s w ork in optics in the 13th
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EARLY HISTORY OF SCIENTIFIC MEASUREMENT 23

century was probably the first instance of an effort to employ mathematics 
to elucidate principles of nature induced from observation.

M easurem ent in  the 17th C entury

Advances in scientific measurement in the 17th century are clearly too  numer
ous to catalog here, and we shall m ention only a few o f the m ajor develop
ments that bear directly on the emergence of an overall strategy o f scientific 
measurement. In addition to the contributions of Galileo and Descartes, the 
17th century witnessed the beginnings of the science o f chemistry w ith the 
work of Boyle (1627-1691) and Cook (1635-1703). In 1628, William Harvey 
revealed his discovery of the circulation of the blood w ith w hat remains one 
of the classic demonstration experiments in the history of experim ental biol
ogy, building on the earlier w ork of Hippocrates and Galen and the careful 
anatomical studies of Leonardo da Vinci.

Early in the 17th century, Napier (1550-1617) introduced the idea of con
tinuous measurement of proportion  and, in doing so, invented the logarithm. 
A number of people then developed logarithmic tables, w hich greatly reduce 
the computational labor involved in physics and astronomy. The slide rule was 
developed in 1622 and still consists of tw o logarithmic scales sliding over one 
another. Pascal and Leibnitz later developed the first calculating machines, 
which were essentially mechanical abacuses.

The 17th century also witnessed the developm ent of instrum entation, both 
as an extension of the senses and as an aid to measurement. Of course, Galileo’s 
perfection of the telescope was the critical event in the developm ent of as
tronomy, and this technology for manufacturing lenses immediately spawned 
the microscope, which was probably invented in Holland. In any case, it was 
the Dutch scientist Leeuwenhoek (1632-1723) who first observed bacteria and 
spermatozoa with the aid of magnifying lenses.

O ther basic instruments were developed or im proved during this period, 
notably the barom eter and therm om eter. It was w ith such instrum ents that 
new types of measurement units (e.g., the Fahrenheit degree) w ere defined 
in terms of the calibrated operation o f standardized instrum ents. In other 
words, the 17th century marked the beginning of scientific m easurem ent of 
phenomena that cannot be detected w ithout the aid of instrum ents and whose 
units are, therefore, at least partly defined by know n properties of the instru
ment. It should be clear that the existence of such phenom ena was not a con
sequence of the invention of the instrum ents, only that the units in terms of 
which they w ere measured sometimes reflected characteristics of the instru
ment. By the 18th century, such measurem ent became comm onplace, espe
cially as experim entation w ith electricity began. Such units as the ohm, watt, 
volt, and ampere carry the names of the m en who invented the devices with 
which to measure those phenom ena that could be detected only by applica
tion of such instruments.

Another major occurrence of the 17th century was the development of non- 
finite mathematics, notably the calculus, invented independently by Newton
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in England (1666) and Leibnitz in G erm any'(l675). This development, when 
coupled w ith D escartes’ earlier refinement of H ipparchus’ invention of physi
cal coordinates into analytical algebraic geometry, provided the language for 
theoretical description and measurement of continuous phenom ena such as 
m otion, acceleration, and various limiting processes. W ith this tool, Newton 
was able to synthesize the know n facts of physics and astronom y into a the
ory of mechanics that survived intact until the early 20th century. Moreover, 
the calculus provided a mathematical system in which formal deductions could 
be restated in the form of scientific predictions to be verified by measurement.

An im portant by-product of the invention of the calculus was not realized 
until the 18th century, although the problems w ere well formulated by 17th- 
century mathematicians such as DeMoivre, Fermat, and Pascal. The impetus 
provided by economists, administrators, and gamblers concerned w ith such 
uncertain matters as annuities, insurance, and the outcomes of games of chance 
led to the developm ent of the calculus of probabilities and, eventually, to 
m odern inferential statistics. We see later that this developm ent constitutes 
the origin of social science measurement, which blended the calculus of p rob
abilities w ith the social philosophy prevalent in the 18th and 19th centuries.

SUMMARY AND IMPLICATIONS

Let us summarize and elaborate on the implications of early scientific meas
urem ent that emerged betw een the time of the early Egyptians and the later 
17th century. Three more or less distinct stages are discernible in the history 
of scientific measurement. The most primitive stage involved the development 
of number systems, conventions for enumeration (counting), and standard units 
of the physical dimensions of time and space. These developments were neces
sary as science moved from the act of mere classification of sense data to the 
level of quantitative description implied by measurement. In other words, pre
cise m easurem ent systems perm itted objective classification of shared percep
tions and provided the basis for meaningful discourse concerning those 
perceptions.

The second major feature of this history is the parallel developm ent of 
mathematical systems and models. Throughout the developm ent of the natur
al sciences, applying the tools of mathematics was usually preceded by ac
cumulating extraordinary amounts of factual data. The nonfinite calculus 
developed by Newton and Leibnitz was not developed in the abstract. Rather, 
the calculus and N ew ton’s consequent Laws of Motion may be regarded as the 
final chapter in the story o f direct physical measurem ent, which took over 
5000 years to unfold.

There has been an unsettling tendency in the 20th century to ignore this 
fact. Formal mathematics has now developed into a separate discipline and 
is no longer exclusively the consequence of a need to organize vast accumula
tions of scientific data. As a result, it has become fashionable to attem pt to 
reverse the traditional process by first borrowing or creating a mathematical
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system and then initiating a search for data that it will organize. Although it 
is true that N ew ton’s calculus perm itted  systematic formal deductions that 
could be translated into scientific predictions, it is not true that every mathe
matical system necessarily displays this degree of correspondence to the w ork
ings of the universe.

The mathematical model building enterprises of today often lack the ex
tensive naturalistic data base that gave N ew ton’s calculus its enormous descrip
tive and predictive power. For example, predicting the exact time and location 
of a com et’s appearance is not a trium ph of the calculus alone, but requires 
a vast body of data describing the relative positions of the numerous entities 
in our galaxy. Unfortunately, elaborating the mathematical model will not com
pensate for the absence of an objective, independently verifiable data base. 
The discipline of macroeconomics enjoys access to the most sophisticated 
mathematical models in history, yet remains unable to forecast precisely sig
nificant oscillations in the major elem ents of our national economy.

The third significant facet of the history of scientific m easurem ent is the 
emergence of measurement through instrum entation. Although the develop
ment of instrument technology was well under way by the end of the 17th 
century, it fairly exploded in the late 18th and 19th centuries during the In
dustrial Revolution. The developm ent of scientific instrum entation, particu
larly in the life sciences, has made a valuable set of measuring devices available 
to the behavioral scientist.

The urge to refine measurement devices remains properly vigorous. An im
portant cautionary note must be sounded, however. The development of meas
uring instruments almost always follow ed the isolation and identification of 
the phenom enon that the instrum ents w ere designed to measure. Although 
new phenomena have been discovered w ith instruments designed for another 
purpose, this remains the exception rather than the rule.

Nevertheless, fascination with instrum entation has sometimes led scientists 
to define phenom ena solely on the basis of the behavior of instruments. This 
extreme form of operationalism 1 is typified by the practice of attempting to 
study human cognition by computer simulation. Programming a com puter to 
“solve problem s” in ways that seem to mimic human efforts inextricably in
volves the computer circuitry in both  the model and the process. Such 
metaphors of computer technology as input, output, storage, coding, retrieval, 
and so on, appear to have acquired the status of biological reality and have 
become the subject matter of a highly specialized “ science.” Actually, these 
terms have no necessary biological referents, and the “behavior” of a com
puter resembles that of a human in only a limited sense. Originally, it was hoped 
that such activity would have heuristic value in guiding research into nervous 
system functioning, but the supremacy of fascination w ith the com puter, as 
evidenced by the distinctive emerging language, has rendered this ideal all but 
unattainable.

'Briefly, operationalism is the doctrine that scientific constructs are defined by the opera
tions through which they are measured.
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It may be argued that a similar fascination w ith biomedical instrum entation 
has occasionally misdirected the efforts of many interested in studying be
havior. Again, naive operationalism gives rise to a synthetic reification of an
cient constructs that Descartes discarded in the Middle Ages for their lack of 
explanatory utility. For example, modern electronic technology has given us 
the capability of m onitoring w ith astonishing precision the minute electrical 
phenom ena that are attendant to all living tissue. Investigators therefore con
fidently attach electrodes to various surfaces of the hum an body and observe 
the correlation betw een potential or resistance changes and various events in 
the surrounding environm ent. In attempting to explain those correlations, 
however, some researchers invent names for the systematic and orderly fluc
tuations in the data, then ascribe process or explanatory status to their in
ventions.

As an illustration, a drop in skin resistance coupled w ith accelerations in 
cardiac and respiratory activity defines arousal, which is also used to explain 
the drop in skin resistance, and so on. Unfortunately, fluctuations of a solid 
state polygraph bestow  upon the concept of arousal no greater scientific utili
ty for the explanation of behavior than Hippocrates’ concept of hum ors con
tributed to the science of physiology.

It is im portant to understand the implications of these historical points for 
the developm ent o f a natural science of behavior. The evolution of the natur
al sciences of m atter was largely coextensive w ith the developm ent of in
strum entation and language systems for measuring and describing their 
independently defined subject matter. The developm ent of instrum entation 
w ithin each discipline is still dictated primarily by the nature of the phenom e
na studied by that discipline, and the science of behavior must follow the same 
strategy.

As we see later in this reading, the tradition established by the measurement 
strategies of early natural science continues uninterrupted to the present day 
in the natural science of behavior. During the late 18th and early 19th centu
ries, how ever, a num ber of intellectual developments coalesced to prom pt a 
major departure from the tradition of natural scientific measurement. This devi
ation has its origins in a problematic philosophical conception of the nature 
and the causes of variability, and it has evolved into a set of measurement strate
gies that constitute the animus of the m odem  social sciences.

THE ORIGINS OF VAGANOTIC STRATEGIES 

Prelim inary D evelop m ents

We noted earlier that late in the 17th century mathematicians began using the 
principles of N ew ton’s calculus to formulate the theory of probability. Sup
port for this w ork came in part from the w ealthy patrons of the mathemati- 
cian-scientists of the time. These benefactors often sought a return on their 
academic investm ent in the form of increased revenue at the gambling tables.
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THE ORIGINS OF VAGANOTIC STRATEGIES 27

During the same period, concern w ith the reliability of measurem ent began 
to emerge. The study of error appears to have its origins in 1806 in the work 
of Legendre, w ho, along w ith Euler and Gauss, developed the least squares 
method for extracting the best measure of a physical event from a set of meas
ures that displays variability. In 1778, Laplace produced the continuous equa
tion of the law of error, and the connection w ith the calculus was made. The 
mathematics of probability had become as formally rigorous as the m athem at
ics of motion.

The im portance of Laplace’s provision o f a nonfinite calculus o f probabili
ty can hardly be overemphasized in considering the subsequent application 
of this mathematical system. Nonfinite mathematics embodied the notion of 
limits, from w hich it is but a short step to the notion of approxim ation of an 
ideal. Thus, the mathematics of probability provides a way of estimating a 
“ true” value from quantitative assessment of the dispersion among empirical
ly measured estimates of that value. An elem entary theorem  in probability the
ory holds that as the sample size upon which such estimates are based becomes 
larger, the error o f estimate of the true m om ent of the distribution becomes 
smaller. The consequences of this theorem for measurement practices was pro
found. The possibility of discovering and even defining true values out of ap
parently uncontrollable variation rendered quantifiable a vast range of 
phenomena that had previously been discussed only in qualitative or metaphor
ical terms. >

D escriptive Use o f  the N orm al Law o f  Error

The use of the mathematics of probability to estimate true values fascinated 
the Belgian statistician Adolphe Quetelet (1796-1874), w ho is regarded by 
many as the founder of the social sciences.2 While still in his 20s, Quetelet 
discovered the earlier efforts of Laplace and Fourier to apply statistical tech
niques to the description of census data. Although trained as an astronomer, 
Quetelet had a profound interest in human affairs and quickly grasped the pos
sibility of using the calculus of probability to estimate the ideals of measurable 
human characteristics, much as calculus provided defined quantitative descrip
tions of the m otions of the planets.

It was Q uetelet’s notion that every individual represented an attem pt by 
nature to achieve perfection but that, like a person shooting at a target, na
ture’s aim was never exact. For example, by collecting a large number of meas
ures of people’s heights and observing that the distribution closely resembled 
the curve of the Normal Law o f Error, Q uetelet could easily calculate the 
“ ideal” height. He w ent on to suggest (quoted by Lazarfeld, 1961) the use of 
this technique to “ measure the qualities of people which can only be assessed 
by their effect” (p. 170). Quetelet suggested, for instance, that we might meas
ure the attribute of drunkenness by observing the frequency w ith which a given

2The contributions of Quetelet are beautifully summarized by Paul Lazarfeld (1961).
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individual gets drunk. Again, large numbers of such observations w ould yield 
a distribution from which it would be possible to estimate the natural idea or 
at least provide a stable description of the prevalence of the tendency in the 
society.

It is im portant to note the teleological assumptions underlying Q uetelet’s 
work. The existence of natural norm s or ideals was assumed, not dem onstrat
ed, and the results of the statistical manipulations upon the variability of direct 
observation only served to affirm the consequent. In doing so, Quetelet was 
merely reflecting the philosophical tem per of his day. His first major work, 
Sur l ’hom m e et le developement de ses facultés, was published in 1835—nearly 
25 years before the appearance of The Origin o f  Species. No sacred oxen w ere 
gored by Q uetelet’s assumption of natural ideals being imperfectly achieved 
in the individual case. To the contrary, the existence of error in the moral sense 
justified the religious and social authority of the day. No doubt great com fort 
was draw n from the use of error of a different sort to describe social phe
nomena.

Of more concern to us is Q uetelet’s willingness to use variability as the ba
sis for defining latent entities or characteristics. Although Quetelet was appar
ently careful to avoid attaching causal significance to such characteristics, his 
successors have no t been so cautious. It is easy to see how  Q uetelet’s w ork 
gives the prestige of quantification to such supposed determinants of human 
behavior as traits, personality attributes, and so on, which were already prom i
nent in the language of the culture. Quetelet thus accidentally arranged the 
conditions for reintroducing into science, albeit by different names, a whole 
class of explanatory variables whose origins are philosophical or religious rather 
than empirical.

P sychop hysics

Quetelet’s use of observed variability was primarily for the purpose of estimat
ing ideals or norms as well as propensities and dispositions. It was Gustav Fech- 
ner (1801-1887) who, working in an entirely different tradition, developed 
the idea of combining observed variability w ith the mathematics of probabili
ty to create units and scales of measurement. Fechner was interested in estab
lishing a correspondence betw een changes in the physical energy directed at 
a human observer and the private experience of that observer. Ernst Weber 
had earlier show n that the ability of the observer to detect a change in physi
cal stimulation was a constant function of the proportion by which the stimulat
ing energy was increased or decreased. Thus, the amount by w hich one light 
must vary in intensity in comparison to a reference light before a subject will 
report seeing tw o lights of differing intensities depends on the intensity of the 
reference light. In making such determinations, the intensity of the com pari
son light is adjusted until the subject reports a difference.

Fechner proceeded to make a large number of such adjustments until he 
found a difference value for which the subject reported noticing a difference 
on 50% of the occasions the stimulus was presented. The corresponding phys-
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THE ORIGINS OF VAGANOTIC STRATEGIES 29

ical difference betw een the tw o lights then defined one sensory scale unit or 
JND 0ust Noticeable Difference). Stevens (1957) referred to this procedure as 
“ measurement by confusion,” because variability in the subject’s behavior is 
clearly the substrate from which the m easurem ent units are defined.

Let us underscore the im portance of this developm ent. The contributions 
of Quetelet and Fechner constitute the basic poin t o f departure for entirely 
new definitional measurement strategies in science. Observed variability in 
measured natural phenomena is described w ith the aid of the calculus of p rob
ability and, from these descriptions, not only are new  phenom ena defined, 
but units for scaling them are created. Two separate procedures (that do not 
necessarily occur together) are involved here, and both may be described as 
vaganotic}  Vaganotic definition denotes the practice of defining phenom e
na into existence on the basis of variation in a set of underlying observations. 
Similarly, vaganotic measurement refers to the creation o f scales and units of 
measurement on the basis of variation in a set of underlying observations.

We can find no precedent in the natural sciences for this method of defin
ing phenomena and their units of m easurem ent.4 The use of procedures 
w herein the phenom ena being measured or the units of measurement are de
fined in terms of variability characterizing a set of otherwise direct observa
tions seems peculiar to the social sciences. This is one of the most fundamental 
differences between the natural and social sciences. Not only does this differ
ence dictate a vastly different approach to defining and quantifying subject 
matter, this difference has profound implications for the tactics of experimental 
design, control, and interpretation.

3 Vaganotic is derived from the Latin vagare (to wander) compounded with the Latin no tare 
(to designate with a brand of mark) and hcnce conveys the characteristic of instability in the meaning 
of the entity thus described. Although we generally cschew the practice of introducing new terms 
into the scientific vernacular, precision and economy o f exposition, together with the overriding 
importance of differentiating among scientific measurement strategies, justifies it in this case. Fur
thermore, the distinction we draw has been anticipated by other writers, notably Boring (1920), 
but has not previously been reduced to categorical description. Such dimensions as ideographic- 
nomothetic and ipsitive-normative have been offered to furnish a basis for discussing the general 
issue of individual versus group sources of data, but do not embrace the underlying question of 
units o f measurement.

^However, we can invent one to highlight the absurdity of such a practice were this to be 
applied in the natural sciences. Let us imagine a scientist who needs to determine the length of 
a certain object. No scale unit such as the centimeter exists, and, thus, there is no calibrated ruler 
with which to perform the measurement task. The resourceful scientist has a large ball of string, 
however, and proceeds to cut lengths o f string that match all of the objects in the laboratory and 
surrounding buildings, thus ensuring a large representative sample of string bits. The scientist collects 
the string segments and presents all possible pairs of them to a panel of trained judges with the 
instruction, “Tell me which one is longer.” Using the method of paired comparison analysis, the 
scientist can extract from these judgments a scale of subjectively judged lengths and can then as
sign to the object the scale value obtained for the matching piece of string. If the scientist wished, 
he or she could even assign a unit name to the string length that matches the object and proceed 
to measure other objects in terms of this unit. No problem exists until another scientist in another 
laboratory wishes to investigate the same phenomena and faces the task of measuring the lengths 
of other examples of the same kind of object. The same process used to arrive at scale values 
and a unit in the second case will obviously yield different values and a different unit, with fatal 
effects on the discovery of facts about the class of objects under study.
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Fechner’s w ork launched the discipline of psychophysics, the history of 
which has been well docum ented by Boring (1942, 1950, 1961). Boring (1961) 
points out that Fechner’s dubious assumption that the JND provided a unit 
of subjective m agnitude im peded progress in psychophysics until the develop
m ent of direct scaling m ethods by Stevens in the 1950s.

M ental M easurem ent

An even greater im pact of Fechner’s thought on the contem porary scene may 
be traced through the w ork of Francis Galton. Galton (1822-1911), a cousin 
of Charles Darwin, synthesized the ideas of Quetelet w ith those of Fechner 
and launched the m ental measurement movement. Galton was evidently im
pressed by Q uetelet’s vast accumulation of instances in w hich the Normal Law 
of Error also described the distribution of various characteristics in the hu
man population. He assumed, as Quetelet probably had, that m ental ability 
was similarly distributed. Following Fechner’s innovation, Galton m apped the 
theoretical norm al distribution onto a 14-step, equal-interval scale and in one 
grand gesture invented, not only the concept of intelligence, but a means of 
measuring it as well.

This idea was put to immediate practical use by Binet (1857-1911) in France 
and Cattell (1860-1944) in the United States. These m en created tests com
posed of items selected for their ability to prom pt perform ances that would 
display variability across a number of individuals. Because this variability was 
distributed in accordance w ith the Normal Law of Error and because Galton 
has defined m ental ability in those terms, it was natural to assert that these 
w ere tests of m ental ability. The sustained impact of this activity on American 
psychology is due in no small measure to the entrepreneurial abilities of Cat
tell, w ho founded or edited a number of prestigious journals in addition to 
forming the Psychological Corporation for manufacturing and selling mental 
tests. M ention of Cattell’s early leadership in the American Psychological As
sociation completes our account of the forces that forged virtually unified adop
tion of the strategies o f vaganotic definition and measurem ent early in the 
history of psychology.

Statistical Scaling

The story of the Normal Law of Error as a basis for description has one final 
catholicizing installm ent—the use of the techniques of statistical inference for 
purposes of scaling. In 1889, Galton published N atura l Inheritance, in which 
he observed the existence of what he called “ co-relation” betw een certain vari
ables measured in the population (e.g., the heights of fathers and sons). He 
also noticed the phenom enon of regression tow ard the mean, and according 
to Boring (1961), gave the problem  to F. Y. Edgeworth for mathematical solu
tion. Edgeworth developed the index of a correlation, from  which Karl Per
son w orked out the product mom ent method of linear correlation in 1896.
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THE ORIGINS OF VAGANOTIC STRATEGIES 31

In hindsight, it is clear that Pearson’s developm ent of the mathematics of 
correlation was a crucial step in the history o f vaganotic practices. Correla
tional procedures enable the investigator to separate variability that is shared 
from that which is unique among variables. From the implicit assumption that 
variability may be used to define and measure phenom ena, the investigator 
is then encouraged to invent names for these com ponents of variability, in
vestigate their relation w ith o ther similarly defined entities, and so on, a d  in 
fin itu m . Current practices in factor analysis and multidimensional scaling 
illustrate this strategy. Not surprisingly, a proliferation of jargon results from 
the problem of finding names for all the little particles of variability created 
by these methods.

Vaganotic measurement of differences, w hich has become the standard 
device for evaluating experim ental effects in American psychology and edu
cation, emerged from the w ork of Ronald Fisher and his student, W. S. Gos- 
set. Gosset elegantly dem onstrated in 1908 that the error in using a sample 
mean as an estimate of a population mean could be inferred probabilistically 
from the variability of the sample observations. This made possible the actu
arial assessment of differences among sample means, again w ith reference to 
the Normal Law of Error.

The logical rationale underlying this practice derives from the devicc of proof 
by contradiction. It is assumed that the variability observed in a set of ex
perimental observations is not due to the operation  on a specified experim en
tal treatm ent. One then calculates the probability of obtaining the observed 
differences among means under these conditions. If that probability is suffi
ciently small, one concludes that the observed differences are the result of 
something other than natural variability, thus contradicting the original assump
tion. The experimental treatment is then selected as the most likely explanation.

The fact that this procedure constitutes vaganotic measurement in exactly 
the same sense as does G alton’s 14-point scale o f mental ability may not be 
immediately obvious. To understand why this practice, usually referred to as 
hypothesis testing, extends the measurement practices of Galton, one need only 
carefully examine the conventional use of formulae for calculating the t- 
ratio .5 The standard formula for calculating t  is given by:

t  _ fo  -  x 2) -  Qi, -  M2)
5- - 

*1  ~ x 2

where is the mean of the first sample, x 2 is the mean of the other sample,
(jul -  n2) is the hypothesized difference in population means (usually 0), and

-i , is the standard error of the difference in means.
•M *2

Critical to our discussion is the quantity • Known as the estimated 
standard  error o f  the difference , it is calculated as follows:

S2 i 2
S i i  =  -------------  + --------------

1 2  n y -  1 « 2 - l

5An identical argument can be made in the case of the F-ratio as used in the analysis of variance.
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w here Sf is the sample variance of the first sample, S\ is the sample variance, 
of the other sample, and n x and n 2 are the respective sample sizes.

The quantities S] and S\ are measures of the variability observed in the two 
samples and are completely determined by the measures that comprise the sam
ples. Calling the quantity SA ^  a standard error does not make it standard in 
any but the most local and temporary sense. It is “ standard” only w ith respect 
to the samples of observations obtained and thus owes its fleeting existence 
entirely to whatever variability characterizes the samples. As a reference value 
against which the magnitude of the num erator is compared, this “ standard 
e rro r” is determ ined by the same set of measurements that define the quan
titative differences it is proposed to assess.

The actual assessment process is rem oved one step from com putation of 
t. The decision w hether the obtained difference in means is large enough to 
w arrant rejection of the null hypothesis is made by consulting a table of prob
abilities associated w ith various values of t under conditions w here the true 
difference is 0. The tabled values relate variation in t to probability values in 
a perfectly legitimate mathematical manner. However, the use o f these values 
tends to be binary and categorical; a result is significant if the associated value 
does not exceed a certain amount, usually .05.

In summary, obtained variability is again used to devise a scale whose units 
are mappings of discrete densities under the curve describing the Normal Law 
of Error, exactly after the fashion of Galton and Fechner. The resulting scale 
is composed of only tw o categories—significant and nonsignificant—and as
signment to one or the other bears no fixed relation to the absolute size of 
the difference under examination.

Fisher, Gosset, and their numerous followers in the discipline of mathemat
ical statistics should no t be held responsible for the fact that their mathemati
cally valid procedure for assessing deviations of a random  variable have been 
subverted for use as measuring devices in the social sciences. Fisher could hard
ly have anticipated that, in his discussion of fiducial limits, his arbitrary exam
ple of .05 would become the index point of a rigid binary scale for measuring 
the quality of scientific research. This unfortunate degradation has neverthe
less become the ultimate consequence of the 19th-century insight that varia
bility could be used no t only to define otherwise nonextensive phenomena, 
but simultaneously to create units and scales for their measurement.

THE ORIGINS OF IDEMNOTIC STRATEGIES

The tradition of scientific measurement that insists on enum eration in terms 
of exact, standard, and absolute quantities or units was by no means stifled 
by the activities of Quetelet, Fechner, and Galton in the 19th century. As a 
m atter of fact, with the exception of the undue attention paid their work by 
philosophers of science in the early 20th century, w e may conclude that the 
vaganotic tradition inspired by these men has been largely ignored in natural 
scientific circles.

Emi
Realce

Emi
Realce

Emi
Realce

Emi
Realce

Emi
Realce

Emi
Realce

Emi
Realce

Emi
Realce



THE ORIGINS OF 1DEMNOTIC STRATEGIES 33

It would be beyond both the scope and purpose of this reading to attem pt 
to summarize the vast array of developm ents that occurred in scientific m eas
urement during the 19th and early 20th centuries. Instead, we pick up the 
thread of innovation that begins w ith Legendre’s attem pt to sm ooth m easure
ment error as it winds its way through the scientific and technological revolu
tion of the 19th century, eventually presenting us w ith the rudiments o f a 
technology for direct measurement o f behavior.

As an astronomer, Legendre was concerned w ith the fact that simultaneous 
observations by different observers displayed variability. As we have seen, he 
approached the problem by using the calculus of probability to compute a value 
about which the variation was minimized. Although probably improving the 
accuracy of estimated measurement, this solution did nothing to contro l or 
eliminate the variability among observers. Of course, at no time did Legendre 
rely on observer variability to define the subject matter of his inquiry. His legiti
mate use of descriptive statistics to quantify m easurem ent error should not 
be misconstrued as an early precursor of vaganotic definition, because the 
phenomena to be studied existed prior to any measurement.

A subsequent 19th-century astronom er, F. W. Bessel, noticed that different 
observers reacted with different latencies to the appearance of a star in their tele
scopic field of view. By carefully equating the aiming point of each observer’s 
telescope, Bessel found that part of the variability in the observer’s latencies 
was constant for each individual. The notion of reaction time thus came into 
being and with it, the impetus for technical refinement of timing devices capable 
of measuring very short intervals. Better experimental estimates of personal 
reaction times were made by having people observe a swinging pendulum , an 
innovation also attributed to Bessel. Bessel may have been among the first to 
measure directly a universal dimension of behavior, its latency.

Measurement of reaction time also played a critical role in the experim en
tal psychology of Wilhelm W undt (1832-1920). W undt trained in medicine 
and physiology, and his pioneering w ork in perception clearly extended these 
disciplines. As a disciple of Helmholtz, W undt knew the value of p roper ex
perimental control, and there is reason to doubt that he was overwhelm ed 
by Fechner’s indirect psychophysical scaling techniques (although he did use 
Fechner’s methods in his studies of perception). From our point of view, 
W undt’s principal contribution lies in his attem pt to develop a “ m ental 
chronom ctry.” He evolved an elaborate scheme for timing (and, presumably, 
measuring) w hat he thought to be conscious processes. He gradually com pli
cated the stimulus array and response requirements for a particular subject and 
reasoned that, by subtracting the successively longer reaction times, he could 
get a measure of the time required for such processes as apperception. Regard
less of what Wundt thought he was measuring with these methods, his units 
of measurement remained standard and absolute. He was unquestionably meas
uring a characteristic of overt human behavior that changed in orderly ways 
as a result of controlled changes in the environment. In addition, further ad
vances in the instrum entation for behavioral timing came from W undt’s 
laboratory.
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The use of simple counting to measure behavior, an idea also suggested by 
Quetelet, developed further in the late 19th century. Both Galton and Binet 
w ere prodigious counters and w ere obliged to count the occurrences of cer
tain behaviors in order to obtain a measure o f test behavior in response to test 
items, although the variability obtained in their data was not subject to fur
ther experimental analysis. Perhaps the first investigator to  experimentally iso
late the sources of variability in counts of behavior was Hermann Ebbinghaus 
(1850-1901). In 1885, Ebbinghaus began using numerical frequency of verbal 
recall as a measure of strength of association or memory. He was influenced 
by Fechner to the extent that Fechner suggested the possibility of measuring 
psychological events, but he did not incorporate Fechner’s notion of scaling. 
Instead, he invented a novel experimental independent variable, the nonsense 
syllable and defined and investigated the phenom ena of learning and mem ory 
in terms of simple, direct counting procedures (number of trials to com plete
ly learn a list, number of items recalled as a function of the passage of time, etc.).

The extension of the natural science approach to measurement to animal 
behavior has its origins in the w ork  of E. L. Thorndike (1898) w ho, in pursu
ing an understanding of animal intelligence, arranged puzzles for animals to 
solve and recorded both the time for solution and the num ber and nature of 
unsuccessful attem pts. Although the object of T horndike’s inquiry was not 
directly accessible to measurem ent, it is im portant to note his reliance on en
vironm ental control and his use of absolute units to describe behavior.

Probably the earliest and still among the m ost elegant uses of instrum enta
tion in the measurement of animal behavior is in the work of Pavlov. In describ
ing his m easurem ent procedures, Pavlov (1927) wrote:

The secretory reflex presents many important advantages for our purposes. It 
allows an extremely accurate measurement of the intensity of reflex activity, since 
here the number of drops in a given time may be counted or else the saliva may 
be used to displace a colored fluid in a horizontally placed graduated glass tube.
(p. 17)

One of the first reports of autom atic behavioral recording may also be found 
in Pavlov’s (1927) writings:

As the saliva flows into the hemispherical bulb the colored fluid is displaced along 
the graduated tube where the amount of secretion can be read off accurately. 
Further it is not difficult to fix up an automatic electrical recording device which 
will split up the displaced fluid into drops of exactly equal volume and reduce 
any lag in the movement of the fluid to a minimum, (pp. 18-19)

Three im portant features characterize the w ork of W undt, Thorndike, Eb
binghaus, and Pavlov and place it squarely in the natural scientific tradition. 
First, their units of measurem ent w ere standard and absolute. None w ent the 
route of Fechner and Galton and developed vaganotic scale of measurement. 
Second, all apparently viewed variability as the scientific w indow  through 
w hich to observe the workings of basic controlling relationships. All four of
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SIGNIFICANCE OF MEASUREMENT STRATEGY 35

these investigators w ere admittedly concerned w ith phenom ena o ther than 
behavior, but none succumbed to the tem ptation to m ix behavioral variability 
with the theory of probability and produce a substance from which to fashion 
tools of measurement.

The third feature that characterizes the w ork of these four investigators is 
their shared tactic of collecting a large num ber of observations from  each of 
a relatively small number o f subjects. Ebbinghaus is know n to have used only 
one subject, himself. Surprising as it may seem to som e readers, the quality 
of their science did not suffer as a result of such small sample sizes. These in
vestigators were concerned w ith establishing the relations betw een controlled 
aspects of the experimental environm ent and the behavior of their subjects, 
not w ith describing the variability of static characteristics in a population.

From the standpoint of the developm ent o f a science of behavior, the work 
of Wundt, Ebbinghaus, Thorndike, and Pavlov established the feasibility of 
applying traditional scientific measurement strategies to behavioral phenomena. 
Inasmuch as the measurement practices differ so dramatically from the vaganotic 
strategies common in the social sciences, it is important to  have a single descrip
tor for the type of measurement we are now  considering. We have chosen the 
term idemnotic^ to denote the type of m easurem ent tha t incorporates abso
lute and standard units whose existence is established independently of vari
ability in the phenomena being measured. The implications of this measurement 
strategy for the scientific study of behavior are pervasive. We argue that the 
measurement strategy adopted influences the resulting tactics of subject matter 
definition, experimental design, reduction and analysis of data, and interpretation.

As in the case of vaganotic practices, the term  idem notic could be used to 
refer to the manner in which phenom ena are defined, as well as to the nature 
of measurement units. Thus, an idem notic definition w ould be made w ithout 
reference to variability in a set of observations made along some underlying 
dimension. This usage would certainly not be inappropriate in that attention 
would be called to the separate functions in scientific analysis of named proper
ties of events and their variability. Except for the historical digression occa
sioned by the emergence of the vaganotic tradition, how ever, this clarification 
seems largely unnecessary. The fact that virtually all natural scientific defini
tions are idemnotic has implications for o ther methodological issues that are 
of at least equal im portance to the consequences of idem notic measurement.

SIGNIFICANCE OF MEASUREMENT STRATEGY 

Further Idem notic C haracteristics

We shall now  consider a few of the more general consequences o f adoption 
of a vaganotic as opposed to an idem notic strategy for the enterprise of 
knowledge production. Although these comm ents are particularly relevant to

^Idemnotic is derived from the Latin idem (the same) compounded with the Latin notare (to 
designate with brand of mark) and thus communicates the stability o f meaning of a unit of meas
urement that is standard and absolute.
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generating scientific knowledge about behavior, we believe their applicability 
extends to all domains of natural phenom ena.

The idem notic-vaganotic distinction is a simple bifurcation of a highly com
plex historical dimension. We can better appreciate the significance of the 
schism if we briefly explore tw o additional facets of the idemnotic strategy— 
standardization and anchoring to arbitrary constants. The earliest forms of 
idem notic m easurem ent involved inventing standard units for the description 
of the three physical parameters—distance, mass, and time. Very shortly there
after, new phenom ena were described and investigated in terms of compound 
units resulting from algebraic combinations o f the basic three. For example, 
the Greeks w orked w ith velocity (distance/tim e) and density (mass/distance).

Beginning in the l 6th century, new units of measurement, often associated 
w ith special instruments, w ere described. An attem pt was made to standardize 
such units by defining them  w ith respect to com m on elements. For example, 
we define the Newton (N) as the force required to give a mass of 1 kg an ac
celeration of 1 m /sec2. Pressure units are force units divided by area Units, 
for example, N /m 2. A convenient reference is the force of atm osphere press
ing on the earth. Thus, a unit called the atm osphere (atm) is advanced, its value 
being 10.3 x 105 N /m 2. Measurement of atm ospheric pressure is often in 
terms of millimeters of mercury (mm Ilg), one of which is the pressure exert
ed by a column of mercury 1 mm high. It is also equivalent to 1/760 atm and 
came into being through the invention of the mercury barom eter in 1643 by 
Torricelli. Clearly, this unit can be reduced to a combination of the three bas
ic dimensions—distance, mass, and time.

During the Age of Reason, the French attem pted to anchor all physical meas
urem ent in natural phenom ena, thinking that by doing so they w ould achieve 
an invariance dictated by the constants of nature. For example, in adopting 
the metric system in 1791, they defined the m eter as the distance from the 
equator to either pole x 10' 6. Nowadays, length and time can be anchored 
to atomic phenom ena by reference to certain wavelengths of light and atomic 
vibrational phenomena, but no such natural standard exists for measuring mass. 
This poses no problem , however, because standards for the meter, kilogram, 
and second exist independently of natural referents.

The desire to anchor units of measurement in natural phenomena may have 
been partly responsible for Q uetelet’s efforts to divine the existence of social 
phenom ena out of observed variation. Had it been possible to establish the 
existence of such phenom ena independently of behavioral variability, a con
stant value could have beerLselected as an anchor for an idemnotic scale. This 
was not the case, of course. The existence of sensation was established by ob
serving behavioral variability (from which Fechner defined the JND), but the 
existence of the atm osphere was not similarly established by observing pres
sure variations. Because the atm osphere was defined and know n to exist pri
or to measurement of pressure variations, an arbitrary but absolute value of 
pressure could be selected as a reference value for a standard scale. Fortunate
ly, behavior, like the atmosphere, is an objective phenom enon w hose exis
tence does not depend on inference from a m ore basic substrate.
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C ontem porary B ehavioral Usage

This idemnotic measurement tradition  finds full expression in the contem 
porary natural science of behavior.. Behavior possesses many of the charac
teristics of m atter in m otion, and the same principles of measurem ent are 
applicable. Units have been developed for describing frequency and accelera
tion, as well as the dimensional quantities of speed and latency. Unfortunate
ly, a large segment of the scientific comm unity that considers behavior its 
subject matter has its origins in the vaganotic tradition of the social sciences 
and has been unable to reap the benefits of measurement based on standard 
and absolute units.

Contem porary vaganotic m easurem ent practices may be distinguished by 
the presence or absence of a formal, labeled unit and the extent to which vari
ation is either implicit or explicit in the construction of the scale. For exam
ple, the Thurstone Case V method of paired comparisons for scaling preference 
makes explicit use of the variability in the preferences of observers making 
pairwise comparisons among a set of objects but does not attach an independ
ent unit label to the numerical outcom e. Perhaps a more w idely know n illus
tration is found in such aptitude tests as the Graduate Record Examinations, 
the Scholastic Aptitude Test, and so forth. On the other hand, statistically aver
aged performance on achievement tests is used to define perform ance expec
tation for various grade levels and these quantities are invested w ith a time 
label—for example, 5-2 years.

Determination of mental age norms for certain intelligence tests follows the 
same practice. The underlying variability is often only assumed and does not 
enter into the calculation of scale values. Technically, such measurement is 
not even vaganotic as we have defined it, although most of the criticisms ob
viously apply. “ On a scale from 1 to 5, how  do you like this dessert?” typifies 
this practice. There is no answer to the question, “ One to 5 w hat?,” so it is 
obvious that no unit label is im parted to such numbers. Variability is nonethe
less assumed and enters the measurem ent process w hen the allowable range 
is decided. For example, “ 3 ” on a scale from 1 to 10 presumably means some
thing different from “ 3” on a scale of 1 to 5- In order to evaluate the response, 
“ 3 ,” it is necessary to know the limits of possible variation.

It is difficult to find cases in which the underlying variability is only assumed, 
but a formal unit label is nevertheless present. Informally, “po in ts” on vari
ous scales serve the linguistic function of a unit and this practice is widespread. 
Classroom achievement tests, developm ental rating scales (“ Score 1 if the stu
dent does it, 0 if the student does n o t” ), and many trait inventories are but 
a few examples of measuring devices that are not derived from explicit varia
bility but nevertheless yield-results that connote a unitary dimension.

Variability

The fundamental task of all science is to account for variability w ithin and 
among natural phenomena. A necessary first step in the accounting process 
has always been quantifying observations to obtain an accurate description of
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the variation that occurs. Unfortunately, using variability as the sole deter
minant of scales of m easurem ent almost forces, for the sake of consistency, 
the assumption that such variability is both inherent and invariant in the 
phenom enon under consideration.

Either of these assumptions is practically fatal to the developm ent of an ex
act science, although, in combination, they are comforting to the proponents 
of the view that an exact science of behavior is an a p rio ri impossibility. The 
assumption that variability is inherent, as Sidman (I960) capably pointed out, 
discourages the search for its causes. The strategic essence of the experim en
tal m ethod in science involves treating variability as the subject m atter to be 
understood and explained. But understanding and explaining must be preced
ed by measurement, and this measurement must be in terms of units that are 
not defined by the same variability as the phenom enon they are designed to 
quantify.

The w idespread use of vaganotic m easurem ent procedures in the social 
sciences has lent tacit support to the implicit contention that hum an behavior 
is inherently variable and thus qualitatively different from other natural 
phenomena. We must recognize that as a consequence o f vaganotic m easure
ment, this assertion has come to be accepted by definition rather than by 
demonstration. The assumption of inherent variability has become tantam ount 
to proclaiming a scientific sanctuary for the philosophical doctrine of indeter
minism, a critical proposition of the body of invented know ledge from which 
many prevailing conceptions of the causes of human behavior are drawn.

The alleged uniqueness of human behavior among natural phenom ena has 
long been proffered as justifying the developm ent of m ethods of investigation 
different from those of the natural sciences. The results of applying these 
methods further encourages the assertion of inherent variability because they 
are inevitably characterized by the presence of unexplained residual variance 
that is often m easurem ent induced. Because the phenom ena under study are 
constantly changing, vaganotically obtained units of measurem ent are chang
ing as well, and the discovery and communication of lawful relations becomes 
virtually impossible.

For example, vaganotic definition and measurement o f intelligence ensures 
that w hatever is represented by any proposed unit (such as an IQ point) varies 
with each restandardization of the test. As a result, such questions as the role 
of genetics in the determ ination of intelligence will never be answ ered at the 
population level because as the independent variable (genetic composition) 
changes, so do measures of the dependent variable. In addition, any discourse 
concerning vaganotically defined phenomena is confusing at best. At its worst, 
it is meaningless, an assessment of such terminology being rendered w ith in
creasing frequency by the lay and professional public. Many people w ho have 
become accustomed to measuring their ow n weight in pounds and their con
sumption of electricity in kilowatt hours have difficulty comprehending a meas
ure of their child’s academic achievement given in terms of other children’s 
academic achievement expressed as a unit o f time.
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Perhaps the best illustration of the strategic differences stemming from vaga- 
notic versus idemnotic measurement is in the resulting m ethods o f handling 
the variability among individual characteristics w ithin a population, which 
so fascinated Quetelet and Galton. As w e have seen, both Q uetelet and Gal- 
ton took this variability as given. The form er measured and described it; 
the latter used it as a means of scaling the entity  to which he attributed its 
existence.

In contrast, Gregor Mendel (1822-1884) view ed the obvious m orphologi
cal variability among members of a species as som ething to be explained and, 
along w ith Galton, suspected that heredity might be partly responsible. In his 
classic experiments w ith garden peas, Mendel show ed that by controlling the 
principal factor responsible for heredity, one could produce populations of 
garden peas whose mathematical distributions of characteristics w ere not only 
predictable but changeable at will. As a result, research in the physiology and 
chemistry of reproduction was greatly stim ulated, and we now  have a rather 
exact science of genetics. It is doubtful that the subsequent benefits to hum an
ity would have resulted had Mendel been disposed to regard the variability 
in color and conformity of garden peas as the basis for the creation of a scale 
for measuring “peaness.”

Other M ethodological D ecision s

Another issue concerns the extent to which acceptance of vaganotic or idem
notic measurement strategies influences other basic methodological decisions. 
This influence is pervasive, usually unrecognized, and often quite pow erful 
in its ultimate effects on the characteristics of the data that are generated and 
on our interpretations of their meaning. It should be clear that the general meas
urement strategy is seminal for o ther decisions by limiting, perm itting, en
couraging, and sometimes requiring the selection of various tactics.

For example, a vaganotic approach encourages measuring the behavior of 
a relatively large number of subjects, w hich in turn necessitates defining 
responses that can be observed in a manner compatible with large groups. These 
tactics come close to requiring group comparison experimental designs, which 
usually force the use of inferential statistics to  assess variability and determine 
interpretative conclusions.

By comparison, idem notic measurement is som ewhat less forceful in its in
fluence, not so much encouraging or requiring subsequent decisions as per
mitting the possibility of measurement, design, and interpretative tactics that 
can lead to markedly superior data characteristics. The use of standard and 
absolute units allows the definition of response in a form that facilitates direct 
and continuous observation of a small num ber of subjects individually, thus 
permitting the use of more powerful experimental designs that approach varia
bility in a vastly different and more productive manner. These tactics lead to 
data that actually constitute a different subject m atter w ith characteristics al
lowing a strikingly dissimilar interpretative process.
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Subject Matter

One impact of measurement strategies merits special attention. A subtle but 
significant reciprocity distinguishes the relation between the conception of the 
subject matter under investigation and the measurement strategy chosen to 
approach the investigation. Answering the “chicken or the egg” question raised 
by the relations betw een subject matter definition and measurement strategy 
is less im portant than understanding the relations and their implications. 
W hichever comes first or exerts more control, it is clear that the conception 
of the nature of the subject m atter to be investigated is a major consideration 
in selecting a m easurem ent strategy. Defining behavioral events that are 
hypothetical, inferred, or otherwise beyond direct observation encourages the 
choice of indirect measurement practices that are usually vaganotic in style. 
Interest in overt behavioral events prompts describing them w ith standard and 
absolute units of measurement. Furthermore, establishing criteria for obser
vational and m easurem ent reliability becomes far less difficult w hen the units 
of measurement are stable.

The correlation between subject matter definition and measurement strategy 
is less than perfect, and conflicting examples are not difficult to find. However, 
the assumptions w ith w hich we approach a subject m atter are potent sources 
of control over many experimental decisions, the first and most im portant of 
which is selecting a guiding measurement strategy.

On the other hand, the impact on subject matter of the measurement strategy 
to which a research program  is committed is probably less obvious and well 
understood. The vaganotic strategy guarantees that the data upon which in
terpretations are based will be minimally composed of both the variability that 
is imposed by the treatm ent and the variability that results from the repeated 
measures required to define the scale and units. Such data actually constitute 
a qualita tively  different subject matter from those generated by idemnotic 
measurement, which, under ideal application, exhibit only treatment-imposed 
variability.

This discussion of the “pure” case does not acknowledge the influences 
on the data of other methodological practices encouraged by these tw o strate
gies. For example, vaganotic measurement usually predisposes the researcher 
toward using a relatively large number of subjects across whom  the repeated 
measures are made. The resulting data are then collapsed statistically so 
that an estimate of the treatm ent effect is furnished by a group or cell mean. 
Of course, an extraneous source of variability—that attributable to differ
ences betw een subjects—has been allowed to enter into determining the 
treatm ent effect, even if only as an error term against which to scale dif
ferences.

The necessity of evaluating mean differences against an error term also high
lights the major weakness of vaganotic measurement—no absolute unit exists 
in terms of which to describe any difference that exists. The use of a small 
number of subjects, each serving as its own control, no t only avoids these 
problems, but encourages attempts to describe, identify, and control extrane-
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ous sources of variability so as to clarify the environm ent-behavior relation 
as it applies to a single individual.

Finally, differences in the process of interpretation highlight the differences 
in w hat have become two fundam entally different subject matters. In both 
cases, conclusions are drawn about the effects of m anipulated variables that 
are intended to apply to the individual case. However, only w ith the tactics 
encouraged by idemnotic strategies has the subject m atter been preserved in 
an undiluted form that facilitates interpretations legitimately generalizable to 
the individual. The practices often associated w ith vaganotic measurement re
quire that interpretations be controlled by the end result of a statistical diges
tive process that completes the transform ation of w hat were once individual 
data into a homogenized subject m atter no longer entirely a natural phenom e
non. Many writers (e.g., Krantz, 1972) have lam ented the apparent chauvinism 
and lack of integration of the disparate literatures that have arisen to accom
modate these tw o distinct subject matters. The underlying differences, 
however, are largely irreconcilable because the differences in the basic strate
gies of measurement are unresolvable.

T echnology

The hope for an effective technology of behavior is predicated on developing 
an exact science of behavior. Such a technology must have the same applica
bility to the individual case as does its parent science. It is only by discovering 
and describing in general form the behavioral relations governing the interac
tion between single organisms and the environm ent that specific technologi
cal applications of these relations can be created.

It is plausible to assert that the abundance of technology emanated from 
the natural sciences is partly the result of the reliance of these sciences on idem
notic measurement. The availability of standard, absolute units has facilitated 
accumulating and refining knowledge in a fashion that is simply foreclosed 
by reliance on varying measurement scales. Only w hen relations have been 
dem onstrated to be stable and general can they be extended and relied upon 
for technological innovation. We argue that such dem onstration is virtually 
impossible in the absence of stable measurement, and therein lies a partial ex
planation of the failure of any vaganotically based approach to the study of 

' behavior to bestow upon the culture any but the coarsest of screening and label
ing technologies.

We contend that there are no justifications for measurement strategies be
ing different in any setting or for any behavioral question. Furthermore, this 
argum ent can be extended beyond technological developm ent to technologi
cal application, in which the only questions raised are those involving main
tenance. A common measurement strategy that is as applicable to the single 
instance as to the general case is a prerequisite for an effective technology at 
both levels.

Once the tactics of idemnotic measurement become commonplace in the 
realm of technological developm ent and application, a mutually productive
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interplay with the parent science will be enhanced. Discoveries and innova
tions applicable to the single case may be described in a manner conducive 
to analysis and eventual generalization, the province of the basic scientist. As 
such generalizations are firmly established, we can anticipate a profound revo
lution in our understanding and management o f behavioral phenomena.



R E A D I N G  F O U R

Describing Behavior With 
Ratios of Count and Time

DIMENSIONAL MEASUREMENT

Describing behavior w ith ratios of count and time has long been an extremely 
popular practice among behavior analysts. Popular traditions and unexamined 
practices warrant careful consideration of how  such ratios are constructed and 
used, however. It may be that some of these practices actually lead us to miss 
features of our data that might be im portant. The ubiquity of count and time 
ratios has also led to some confusions about how  we use certain terms. These 
problems may constrain our ability to interpret data as thoroughly as might 
be possible.

Constructing ratios involving count and time is a com ponent of dim ension
al measurement, which is the way that all natural sciences observe and record 
phenomena. This feature of scientific m ethod requires specifying the facets 
of a physical event or variable that are the focus of interest and how these 
features will be quantified. Properties, dimensional quantities, and units of 
measurement constitute the foundation for dimensional measurement. Proper
ties are fundamental qualities of objects or events that can be represented in 
distinct dimensions, whereas dim ensional quantities, also referred to simply 
as dimensions or quantities, are quantifiable aspects of properties (see chapter
5 in Volume I). The distinction betw een properties and dimensional quanti
ties is often not clearly draw n in practice, however, and experimental interests 
are usually expressed in terms of quantities (see Ellis, 1966, chapter 2, for a 
discussion of this issue; as well as McDowell, 1988). Units of m easurem ent 
are determinate amounts of dim ensional quantities, usually defined as a fixed 
and standard amount of each. W hen scientists attach a num ber to a unit so 
as to describe the am ount of a quantity that is present, the result is called a 
measure of that event.

For example, an object may have the property of physical extent, which
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in turn can be described by quantities such as length and weight. These quan
tities are measured in terms of basic units such as meters and grams. The list 
of such quantities and units routinely used in science and technology is exten
sive (e.g., see Chertov, 1964; Cook & Rabinowicz, 1963; Zebrowski, 1979), 
and there is a sizeable literature concerning this critical aspect of measurement 
(e.g., Ellis, 1966; Ford & Cullmann, 1959; lpsen, I960). This literature addresses 
the origin and definition of quantities and units, as well as the tactics guiding 
their use.

As a physical event, behavior can be described in dimensional terms. 
Although there are a great many established quantities that may be used to 
describe different dimensions of behavior, attention has traditionally focused 
on a relatively short list of possibilities. These include countability, latency, 
and duration (all of w hich characterize the single response, as well as.rate and 
interresponse time (which apply only to multiple instances of behavior, such 
as a response class. Of these, rate is one of the most popular quantities used 
in the analysis of behavior.

RATIOS OF COUNT AND TIME 

In terest in  Count and Time

One of the reasons for the popularity of rate in the analysis of behavior is prob
ably Skinner’s seminal use of it as a measure of response strength (Skinner, 
1938). In contrast to traditional preparations of the era, Skinner measured be
havior under conditions in which the organism was “ free” to respond at almost 
any time. Rate of responding captured the dynamic character of behavior bet
ter than the latency or duration measures usually associated with discrete-trials 
procedures (Skinner, 1966). The extensive reliance on rate and its usefulness 
throughout the field’s more than 50 years of experim ental literature assures 
this measure a continued primacy among dim ensional quantities.

Rate may have been found useful because it conveniently integrates two 
different quantities of interest in the form of a ratio that provides more infor
mation than either quantity considered separately. If a sample of responding 
is described by either the number of responses emitted or the total duration, 
but not both, in each case we are likely to find ourselves wanting the other 
quantity in order to make more sense of the one we have. For instance, know 
ing that a student correctly completed five math problems is of little value un
less w e know  how  long it took to do so. Similarly, knowing that a client 
tantrum ed for 45 minutes during the day would be interpreted differently if 
this aggregate duration had resulted from one tantrum  versus nine.

A preference for both  count and time information may also reflect our ap
preciation that how  often behavior occurs is one of the most general and use
ful features to know about it (but cf. Nevin, 1974, 1979, for example, regarding 
resistance to change). An integration of the quantities of count and time is im
plicit in the connotation  of “ oftenness.” However, depending on what tem 
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poral features are described and how the ratios are constructed, these two quan
tities allow a variety of possible ratios, each of w hich describes a somewhat 
different aspect of behavior.

This reading examines some derived quantities of count and time, some of 
which are quite comm on in the behavioral literature and others of which are 
still relatively untried. It focuses on w hat each ratio tells us, w hy we may wish 
to use one instead of another, and w hat terminological issues these quantities 
raise. In addition, the reading briefly considers related issues such as derived 
quantities, dimensional analysis, advantages and disadvantages of ratios, and 
how  to select useful quantities for measurement. Throughout, count and time 
ratios are considered in the context of the goal o f describing behavior, rather 
than variability in behavior. The use of ratios for describing variability in sets 
of observations raises other issues that will not be treated here.

Count and Total Time

C o u n t O ver T o ta l T im e. Certainly the m ost comm on ratio of count and 
time is obtained by dividing the total num ber of occurrences of the target be
havior by the total time that observation occurred. This quotient is called either 
frequency  or rate , each of w hich has a long history o f varying scientific and 
colloquial usages. Before Skinner emphasized rate (which he sometimes termed 
frequency), the use of the term s rate and frequency had already become 
thoroughly confused.

The Oxford English D ictionary  acknowledges that the tw o words have 
generally been used interchangeably in scientific contexts. Although references 
to frequency as a ratio of the number of times an event occurs in relation to 
time (e.g., cycles per second in measuring the frequency of a tone) can be found 
more than a century ago, statistical references to frequency as the number of 
times an event occurs in a given sample w ere also used (Boole, 1854). The 
extensive use of statistics in psychology and the social sciences may make fre
quency more familiar as countability than this usage is in the natural sciences. 
On the other hand, in scientific contexts, rate more consistently refers to some 
measure of count over time, although rate probably has more varied colloqui
al usages than frequency.

Given that behavior analysis has its origin in psychology and yet looks 
to the natural sciences as its model, it is understandable that behavior ana
lysts may often be confused about the meaning of frequency. As suggested 
in Box 5 2 in Strategies a n d  Tactics, either term  is acceptable as a reference 
to this ratio, but it is im portant to be clear w hich definition is being used in 
each case.

Terminology aside, there is a more im portant problem w ith this type of 
count/tim e ratio. Using the total time of observation as the time measure in
extricably mixes two behaviorally distinct “kinds” of time. The total time dur
ing a period of observation is fully composed of the duration of each response, 
as well as the interresponse time (a type of latency) betw een the end of each
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response and the beginning of the nex t.1 These tw o temporal quantities have 
very different behavioral implications. Duration is time during w hich the 
response class is occurring. Assuming that only one response in the class can 
occur at a time, no o ther instance is possible w hen one response is already 
occurring. In contrast, interresponse time is time during which responding can 
presumably occur, given other prerequisites for responding.

Because duration and interresponse time represent im portantly different 
aspects of behavior, combining them in a total time measure can only risk ob
scuring relations o f possible interest w hen rate is calculated by dividing count 
by total session time. If a series of rate measures decreases across sessions, for 
instance, it will probably be im portant to know  if the reduction occurred be
cause the duration of responses increased or the interresponse times increased. 
In other words, if the rate of an employee’s perform ance on a task decreases, 
it w ould probably be im portant for someone interested in understanding this 
decrease to know  w hether it results from an increase in the duration of w ork 
responses or an increase in the time between responses (during w hich incom
patible and inappropriate behavior may occur).

W hen either o r both quantities are free to vary and such variations might 
be interesting, using this ratio may obscure relevant information. Much hu
man behavior seems to vary significantly in duration and interresponse time, 
and such variations may be independent.2 W hen data describing rate of 
responding have been calculated using total session time, it is impossible to 
know  to what extent variations in rate measures are due to variation in dura
tion, interresponse time, or both.

Although mixing duration and interresponse time has this inherent disad
vantage, it is not always serious. For instance, w henever one of the tem poral 
quantities is know n to be relatively constant or extremely brief, this com m in
gling may be unim portant. This might be true if durations or interresponse 
times w ere knowingly constrained by some aspect of the situation. This may 
be the case w hen the nature of the response class assures that the quantity is 
relatively trivial (i.e., as w ith the duration of a pigeon’s key peck), or w hen 
some aspect of the environm ent produces either consistent or trivially brief 
values (e.g., very brief presses on a w ord processor keyboard aided by both

‘Technically, the session is started during the interresponse time between the first response 
and the last one that occurred before timing began: Similarly, the session is ended during the inter
response time between the last response and the one that follows after the session. These “pseudo
latencies” contribute a small degree of distortion into rate measures, although the errors tend 
to cancel each other (see Strategies and Tactics, chapter 5, for further discussion of this point).

2It might appear that these quantities are necessarily dependent within a session because to
tal duration plus total interresponse time equals total session time. This is true for any one ses
sion length, however, only if total duration and interresponse time are being considered. If 
individual durations and interresponse times are of interest, these values can vary between ses
sions of the same length. Furthermore, if session lengths vary, even total duration and interresponse 
time can vary independently. Finally, these relations are true by definition when the behavior 
can only occur during sessions. However, when the behavior can also occur independently of 
experimental sessions, which are then an arbitrary imposition of measurement, these quantities 
may vary independently.
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the return  spring under each key and the aversive effects of holding a key 
down).

Having examined some interpretive consequences of mixing duration and 
interresponse time in total session time calculations of rate measures, we now  
revisit the original terminological problem  from  a slightly different perspec
tive. Although it may be argued that our label for a quantity is less im portant 
than clearly understanding w hat it does and does not tell us, calling the ratio 
of count over total session time rate  seems to involve som e inconsistency be
tween colloquial connotations and technical language. If rate is generally in
tended to refer to “ oftenness,” then using this label for a quantity that 
incorporates duration is misleading. Oftenness implies a quantity of “being 
able to occur” or “ oftenness given possible occurrence.” O ur ability to de
tect this aspect of behaving is limited by the extent of the total duration of 
a sample of responding, and the ratio of count over total tim e can be mislead
ing. Practically speaking, however, rate (or frequency) seems unalterably at
tached to the count/to tal time ratio. However, to ta l rate o r overall rate will 
distinguish this construction from other form s o f rate.

T o ta l T im e  O ver C ount. If total count over total session time expresses 
the num ber of responses emitted per unit o f session time, the inverse ratio 
describes the average amount of session time per individual response. As w ith 
its sibling ratio, this quantity is potentially useful w ithin the limits just described. 
However, we may be unaccustomed to looking at count and time information 
in this form, so such measures may seem confusing or, at best, only vaguely 
interesting. Perhaps the popularity of count over total time has discouraged 
examining the utility of total time over count, or perhaps w e are simply more 
interested in count than time.

Another possibility is that this ratio makes the confusion caused by mixing 
duration and interresponse time too obvious to accept. With this ratio, a 
description of “ seven minutes per response” plainly raises the question of 
“ seven minutes of w hat?” (i.e., duration or interresponse time). The answer 
must confront the awkward duration-interresponse time dilemma. The analo
gous description of “ seven responses per m inute” associated w ith count over 
total time does not seem to offer a comparable problem, though, only because 
we customarily omit reference to the p roper unit of measurement for 
countability—the cycle. The technically p roper expression is, “ seven cycles 
per m inute,” and then asking for the referent of cycles may be answered by 
identifying the response class.

W hatever the reason for the apparent lack o f interest, this ratio would seem 
to have descriptive potent equal to that of the coun t/to ta l ratio. There is no 
general reason why countability should be more im portant than temporal quan
tities, although it may be a challenge to identify situations in which mixing 
duration and interresponse time is im portant or even desirable. If this is the 
case, one of the “ cleaner” ratios discussed will always be preferable.

Finally, the ratio of total time over count has no accepted name in psychol
ogy. ” Average session time per response” is as close as w e tend to come, and
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this is m ore description than label. In the natural sciences, it is referred to as 
period  (as in “ the period swing of a pendulum ” ) and this may be an appropri
ate label.

Ratios o f  Count and D uration

C o u n t O ver D u ra tio n .  This ratio describes the average num ber of 
responses per unit of total duration. Although it may seem similar to the tradi
tional concept of rate (count over time), it is fundamentally different. Whereas 
rate connotes the average number of times that a response occurs per meas
urem ent interval during which responding is possible, count over duration 
describes average count during periods when responding is already occurring. 
Although such a ratio may well describe features of responding that are useful 
in some experiments, it seems to make less behavioral sense than count over 
interresponse time.

Many investigators are not accustomed to this quantity, and most probably 
find it difficult to conccptualize. This may be because of the previously cited 
fact that an operant generally cannot occur w hen it is already occurring. It 
seems meaningful to look at total count averaged over the time available for 
it to occur (i.e., rate), but averaging count over time when responding cannot 
occur is difficult to interpret. For instance, if we divide the total number of 
math problems correctly answered by their total duration, the same measure 
that seems clear in the case of rate (i.e., responses per minute) is now confusing.

However, when the contingencies for initiating a response are different from 
those for ending a response, this ratio may be m ore clearly interpretable. (The 
variables controlling initiation of watching a television that is already on might 
be auditory, whereas the variables controlling cessation of watching a televi
sion might be visual. Such a ratio may represent response initiations or term i
nations per unit of duration, which might provide useful information under 
some conditions. Nevertheless, the ratio of count over duration has no estab
lished name. Perhaps response continuity  is closest to w hat this ratio describes.

D u r a tio n  O ver C oun t. The inverse of total count over total duration, 
on the other hand, expresses the familiar and usually more behaviorally 
meaningful quantity of average duration per response, which is usually called 
average duration. Examples are common in the behavioral literature (e.g., aver
age time spent playing, studying, etc.).

R atios o f  Count and Interresponse Time

C o u n t O ver In te r re s p o n se  T im e . This ratio might be said to be the 
quantity that we ought to call rate. It avoids the difficulty described in inter
preting a quantity that places count over duration plus interresponse time. Total 
count over total interresponse time simply describes the average num ber of 
responses that occur during periods when responding is possible. For example,
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a ratio of the number of inhalations of cigarette smoke over the total number 
of minutes not actually inhaling is a form o f rate corrected for periods during 
which responding cannot occur (i.e., duration). Because the term rate is often 
assigned to the ratio involving total session time, this quantity has no unique 
identifier. If count divided by total session tim e is qualified as to ta l or overall 
rate , it would perm it count over interresponse time to be called, simply, rate, 
although some distinctive modifier may be necessary.

In te rre s p o n se  T im e  O ver C ount. Because this quantity uses a measure 
of the time during which responding can occur, it makes more behavioral sense 
than duration over count. Total interresponse tim e over total count describes 
the average time between responses and is appropriately labeled average in 
terresponse time.

O ther C o u n t a n d  la te n c y  R a tio s . Of course, interresponse time is only 
one type of latency. The time betw een a stimulus event and a subsequent 
response is another quantity that may be inform ative w ith some experimental 
preparations (e.g., the time betw een an alarm going off and a corrective ac
tion being taken). Accordingly, the two quantities placing count and this type 
of latency in ratios may sometimes describe useful aspects of responding.

USING COUNT AND TIME RATIOS 

Other R atios Involving C ount and Tim e

The quantities of duration and latency are in the category of quantities that 
are called substantial variables (Ipsen, I960) or fu n d a m en ta l variables (Cher- 
tov, 1964; Ellis, 1966; Ford & Cullmann, 1959) because they may be measured 
directly and their units have been defined independently in terms of some ar
tificial standard. (The nature of the quantity of countability does not require 
an independently defined unit because it m erely requires enumeration of in
stances, although it is still usually considered a fundam ental quantity.) The 
count and time ratios discussed above are term ed simple n a tu ra l variables 
(Ipsen, I960) or derived quantities  (Chertov, 1964; Ellis, 1966) because they 
are derived from fundamental quantities on the basis of physical relationships.

Any of these ratios can themselves participate in other ratios as either numer
ator or denominator. The familiar quantity o f acceleration is a good example 
of this practice. It may be defined as a ratio o f rate (count over time) over time, 
or count divided by time squared. In the case o f behavior, acceleration and 
deceleration (increasingly referred to in behavior analysis as celeration , as p ro 
posed by Pennypacker, Koenig, & Lindsley, 1972) described the change in the 
rate of responding over time. Many ratios o f count and time are possible, but 
there is no a priori guarantee that any particular ratio will be meaningful in 
the study of behavior.
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One m ethod of obtaining clues about meaningful functional relations is 
through dimensional analysis (Bridgeman, 1922; Barenblatt, 1987). The process 
of creating derived quantities will result in some that lack units of measure
m ent and are thus called dim ensionless variables, quantities, or numbers (e.g., 
the Mach number, which is the ratio of the speed of an object to the speed 
of sound in the medium through which it travels). D im ensional analysis is 
a technique for deriving dimensionless numbers that may lead to promising 
or interesting experimental findings through the delineation of all viable func
tional relations. For example, dimensional analysis can show that the period 
swing of a pendulum  is independent of its mass and depends on length, ac
celeration, and swing amplitude (Ellis, 1966; Ford & Cullmann, 1959). Thus, 
dimensional analysis may be used to aid the search for physical relationships.

Dimensional analysis cannot preem pt empirical analysis, however, because 
empirical evidence is always required to confirm any supposed functional re
lation. For example, it is conceivable that the period swing of a pendulum may 
depend on mass or length in a way different from that specified by the dim en
sional formula. That is, the relationship suggested by dimensional analysis may 
not exist under all conditions (such as varying atm ospheric conditions), or it 
may be modified by a dimensionless constant. Furthermore, meaningful func
tional relations may be implied through the use of dimensional analysis, but 
its use will not lead to the discovery of “basic” laws such as gravity. Fundamen
tal physical relations are not always derivable from other relations, and they 
are often not unitless (Ellis, 1966). Therefore, dimensional analysis may be used 
to propose experimental directions that must be tested empirically or as a check 
on the meaningfulness of calculations.

The field of behavior analysis has not often attem pted dimensional analysis 
(cf. Nevin, Mandell, & Atak, 1983). Such analyses w ould involve examining 
various com binations of fundamental quantities in an attem pt to learn some
thing new about particular facet of behavior. The quantities that were suggested 
by the literature as relevant would be combined in different ways and candi
date dimensionless numbers obtained. Each would then be applied to the anal
ysis of actual data in a search for orderly relations. However, order per se may 
not always be meaningful (i.e., useful). The features of behavior described by 
a dimensionless quantity must also be shown by experimental research to be 
im portant to our understanding of behavior.

D isadvantages o f  R atios

W hen tw o or m ore fundam ental quantities are combined in a ratio, the view 
er’s behavior can no longer be controlled by the original quantities (unless, 
of course, those quantities are retained separately in some form). Although 
this may well be an intentional and valuable analytical tactic, it nonetheless 
involves a “ loss o f inform ation” that can hinder effective interpretation. For 
instance, w hen the total num ber of self-injurious responses per observation 
period is divided by the total interresponse time to provide an experim ent’s 
sole data, viewers cannot know  either total count or total interresponse time.
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Whether this omission is im portant will depend on the particulars of each such 
case, but the risk certainly exists that the use of these fundam ental quantities 
only in thejform  of such a ratio will limit interpretation.

A related limitation of ratios is that the viewer has no information about how 
each of the underlying quantities contributes to changes in the ratio. The point 
is illustrated by Fig. 4 .1, which displays a series of session values representing 
two different quantities (Q1 and Q2, bottom ) and the quotients resulting from 
dividing one quantity by the other (Q1/Q2, top). It is easily seen that a descrip
tion of the sequential change in Q 1 /Q 2  w ould im properly represent change 
in either of the quantities that were com bined to form  the ratio.

SESSIONS

FIG. 4.1. Session values representing two different quantities (g l  and Q2, bot
tom) and the quotients resulting from dividing one quantity by the other (QI/Q2 , 
top).
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For example, m ost w ould describe the data points in the top panel approx
imately between sessions 10 and 20 as relatively stable. However, this stabili
ty is produced by sharply increasing and decreasing transitory sessions in Q l 
and Q2i w ith Q2 having much higher values. This limitation (which applies 
to a all ratios) can be serious, and should at least be acknowledged in in terpre
tations. W hen describing ratio data, the customary phrase, “ Responding 
showed such and such a pattern . . . ” should always be qualified by reference 
to only the particular derived quantity under analysis (i.e., Rate  of respond
ing show ed . . .). O f course, either of the contributing quantities can be in
dependently analyzed, thereby avoiding this problem .3

Selecting U seful Ratios

Which ratios involving count and time will be im portant in the analysis of be
havior? In spite of the popularity of rate (as traditionally calculated), there can 
be no general answer to the question. The quantity that reveals variability that 
helps to answer the experimental question may not even involve count or time 
(e.g., fofce). Although it may be possible to exclude certain quantities before 
the fact (as when some aspect of procedure makes the variability in a certain 
quantity meaningless or trivial), it is more difficult to be sure which will show 
variability that turns out to be important.

The conservative solution to this problem is to measure all of the reasona
bly relevant fundam ental quantities so that all candidates and their possible 
ratios will be available for analysis. This is not as challenging an option as it 
might stem . If observation can detect the beginning and end of individual 
responses and therefore create a record of the number of responses and all 
of the rt-'sulting intervals (i.e., durations and interresponse times), all quanti
ties based on count and time will be available. If it is not possible to identify 
individual response cycles (e.g., if it is only possible to know  w hen the be
havior ii> occurring, as w ith the behavior of watching TV), only duration can 
be measured.

Having all quantities based on count and time at one’s analytical disposal 
is encouraging, but it does not mean that any possible ratio that shows sys
tematic variability w ithin or across phases is automatically behaviorally 
meaningful. As discussed, some ratios may be uninterprctable for the study 
of behavior and others may be inappropriate or trivial in the case at hand. If 
any set 0f  data describing fundamental count and time quantities is subjected 
to sufficient examination, it is likely to exhibit some kind of order. However, 
the meaningfulness of the resulting derived quantity must be convincingly 
shown and the generality of the relations must then be experimentally estab
lished.

In surfimary, ratios of count and time can bring the view er’s interpretations

3The points in this section fully apply to ratios in which numerator and denominator represent 
like quantities (e.g., percentages).
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under control of aspects of responding that might not otherwise be evident. 
However, casual selection or autom atic construction o f such ratios can lead 
to interpretative limitations and errors. Cautious use, guided by the focus of 
the experimental question and possibly supplem ented w ith other displays of 
the same raw data, may augment our analytical skills.
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R E A D I N G  F I V E

Probability as a 
Scientific Concept

USE IN BEHAVIOR ANALYSIS 

The D efin ition a l Problem

It has been said that Bertrand Russell once told a class, “ Probability is the most 
im portant concept in m odern science, especially as nobody has the slightest 
notion w hat it m eans” (cited in Bell, 1945, p- 587).1 Although one might 
quibble about Russell’s priorities, there is no evidence that his assessment of 
this definitional state of affairs is dated. Certainly it is still the case in the field 
of behavior analysis that the concept of probability has multiple and conflict
ing meanings of uncertain utility. For example, a recent survey of the editori
al staff of the Jo u rn a l o f  the Experim ental A nalysis o f  Behavior, the fo u r n a l  
o f  Applied  B ehavior A nalysis , The Behavior Analyst, and Behaviorism  con
ducted by Johnson and Morris (1987) allowed respondents four broad 
categories of meanings. As if these were not enough, 23% even checked a fifth 
category (other) and 40% checked tw o or m ore categories.

The problems that issue from such variety are the same as w ould follow 
from any technical scientific terms that share the curse o f definitional ambigui
ty. In contrast w ith the language of the culture, the language of science is at 
least intended to be especially precise and spare; scientific definitions of tech
nical terms are formal, complete, and narrow. W hen this is not the case, con
fusion and m isunderstanding occur, which in turn lead in one way or another 
to inaccurate inferences and wasted scientific resources. Although it might be 
argued that probability is either more or less than a technical term, in fact it 
is often used in a m anner similar to technical terms called dimensional quanti-

’This quote was taken from Johnson and Morris (1987).
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ties (frequency, duration, latency, etc.). Whatever its formal or informal mean
ings, it is difficult to argue that precision of reference is unim portant.

B. F. Skinner

The term probability in behavior analysis was clearly assigned its major role 
by B. F. Skinner. In his early w ork, he discussed operant behavior in terms' 
of its “ strength,” which he related to frequency: . appeal m ust be made
to frequency of occurrence in order to establish the notion of strength. The 
strength of an operant is proportional to its frequency of occurrence . . . ” (1938, 
p. 21).

In a paper delivered in 1949, Skinner seemed to have relegated “ strength” 
to a more minor role, and “probability” had begun to replace it in im portance. 
For example, in “ Are theories of learning necessary?” he w rote: “ If we are 
to predict behavior (and possibly to control it), we must deal w ith p robab ili
ty o f  response. . . . Rate of responding is not a ‘measure’ of probability, but 
it is the only appropriate datum in a formulation in these term s” (1959, p- 46).

A few years later, Skinner’s references to probability seemed to grow  more 
frequent. Some illumination of his thinking is also revealed by two quotes from 
Science a n d  H um an Behavior-.

Suppose now we bring someone into a room and place a glass of water before 
him. Will he drink? There appear to be only two possibilities: either he will drink 
or he will not. But we may speak of the chances that he will drink, and this no
tion is the probability that he will drink. This may range from virtual certainty 
that drinking will occur, to virtual certainty that it will not. The very consider
able problem of how to measure such a probability will be discussed later. For 
the moment, we are interested in how the probability may be increased or 
decreased. (1953, p. 32)

To get at the core of Thorndike’s Law of Effect, we need to clarify the notion 
of “probability of response.” This is an extremely important concept; unfortunate
ly, it is also a difficult one. In discussing human behavior, we often refer to “tend
encies” or “predispositions” to behave in particular ways. Almost every theory 
of behavior uses some such term as “excitatory potential,” “habit strength,” or 
“determining tendency.” But how do we observe a tendency? And how can we 
measure one?

If a given sample of behavior existed in only two states, in one of which it 
always occurred and in the other never, we should be almost helpless in follow
ing a program of functional analysis. An all-or-none subject matter lends itself 
only to primitive forms of description. It is a great advantage to suppose instead 
that the probability that a response will occur ranges continuously between these 
all-or-none extremes. We can then deal with variables which, unlike the eliciting 
stimulus, do not “cause a given bit of behavior to occur” but simply make the 
occurrence more probable. We may then proceed to deal, for example, with the 
combined effect of more than one such variable. (1953, p. 62)

In a lecture given in 1955, Skinner suggested problems, how ever: “ Proba
bility of responding is a difficult datum. We may avoid controversial issues

Emi
Realce

Emi
Realce

Emi
Realce

Emi
Realce

Emi
Realce

Emi
Realce

Emi
Realce

Emi
Realce

Emi
Realce

Emi
Realce

Emi
Realce

Emi
Realce

Emi
Realce

Emi
Nota
Passagem de "força" para "probabilidade", frequência/taxa continua sendo a medida.Preocupação com PREVISÃO  e CONTROLE.Isso possivelmente tem haver com a distinção reflexo x operante.Não faz sentido "prever" um reflexo. O que se faz é medir sua força.

Emi
Realce

Emi
Realce

Emi
Realce

Emi
Realce

Emi
Realce

Emi
Realce

Emi
Realce

Emi
Realce

Emi
Realce

Emi
Realce

Emi
Realce

Emi
Realce

Emi
Realce



56 READING 5

by turning at once to a practical measure, the frequency  w ith which a response 
is em itted” (1959, p. 102). In Schedules o f  Reinforcem ent, he and Ferster con
tinued this convenient substitution: “ Our basic datum is the rate at which a 
response is em itted by a freely moving organism. . . . Such a datum is closely 
associated w ith the notion of probability of action. Among the independent 
variables which modify this rate or probability are some which are not primarily 
at issue in a study of interm ittent reinforcem ent” (1957a, pp. 7-8).

In his book, Verbal Behavior (1957b), Skinner made only two references 
to probability:

Some parts of a verbal repertoire are more likely to occur than others. This likeli
hood is an extremely important, though difficult, conception. Our basic datum 
is not the occurrence of a given response as such, but the probability that it will 
occur at a given time. Every verbal operant may be conceived of as having under 
specified circumstances an assignable probability of emission—conveniently called 
its “strength.” We base thé notion of strength upon several kinds of evidence.
(p. 22)

Although the English language contains many expressions which suggest that the 
concept of probability of response is a familiar and useful one, certain problems 
remain to be solved in using it in the analysis of behavior. Under laboratory con
ditions probability of response is easily studied in an individual organism as fre
quency of responding. Under these conditions simple changes in frequency can 
be shown to be precise functions of specific variables, and such studies supply 
some of the most reliable facts about behavior now available. But we need to 
move on from the study of frequencies to a consideration of the probability of 
a single event. The problem is by no meanis peculiar to the field of behavior. It 
is a basic one wherever the data of a science are probabilistic, and this means 
the physical sciences in general. Although the data upon which both the layman 
and the scientist base their concepts of probability are in the form of frequen
cies, both want to talk about the probability of a single forthcoming event. In 
later chapters of this book we shall want to consider the way in which several 
variables, combining at a given time, contribute strength to a given response. In 
doing so we may appear to be going well beyond a frequency interpretation of 
probability, yet our evidence for the contribution of each variable is based upon 
observations of frequencies alone, (p. 28)

AH of the aforem entioned quotes were from  no more than passing refer
ences to the issues surrounding probability. More recently, Skinner discussed 
response probability at somewhat greater length in Contingencies o f  Reinforce
m en t (1969):

We are not so much concerned with the topography of a response as with the 
probability that it will be emitted. Probability is a difficult concept. For many 
purposes we may be content with rate of responding, but this is awkward when 
a single instance of behavior is attributed to more than one variable. Similar 
problems arise, together with many others, when probability is inferred from 
the occurrence or nonoccurrence of a response in a given “trial.” . . .  A common 
practice is to evaluate probability of response in terms of magnitude of an in
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dependent variable. A response evoked by a brief stimulus, for example, is felt 
to be stronger than one which requires a longer exposure. The probability seems 
to lie on a continuum between the time which guarantees a response and the 
time at which no appropriate response is ever made. . . . Probability of response 
is also sometimes inferred from how quickly the response is acquired or brought 
under stimulus control. If a response of complex topography is acquired only 
slowly, it is assumed that it began in very low strength. When an organism has 
been conditioned to respond to a given pattern, the probability that it will respond 
to a different pattern is sometimes argued from the speed with which it forms 
a discrimination. If it learns to distinguish patterns quickly, it is assumed that 
learning to respond to one pattern does not make a response to the other highly 
probable. Speed of learning is also sometimes used to measure probability attribut
ed to deprivation or aversive stimulation. . . . Speed of forgetting is also, as we 
have noted, used to infer probability; a response which can be recalled a long 
time after acquisition is presumed to have been stronger when acquired, (pp. 
91-92)

Finally, in an undated entry in his Notebooks, Skinner com m ented in reac
tion to a review in Scientific A m erican  that suggests that “ there is a tendency 
to think of a probability as being inherent in the event rather than in some
thing the individual w ho is trying to predict the event has done” :

Is probability “inherent” in anything? The word shows the uneasiness with which 
probability is discussed. If we assume that a response is strong because upon similar 
occasions it has been reinforced on a given schedule, then the probability is: a. 
“inherent in the event” in the sense of due to the scheduled contingencies, b. 
“something the individual . . . has done” in the sense of the exposure to these 
contingencies, and c. a matter of “ trying to predict the event” in the sense of 
the strength of the behavior itself (strong if the event is “confidently predict
ed”) or in the sense of formulating the contingencies in a rule for future action. 
The statement that ‘ ‘probabilities we assign . . . become reflections of our prefer
ences” means that the probabilities are the preferences. (1980, pp. 331-332)

The view of probability that emerges from these references leaves much to 
be desired. For Skinner, probability seemed to be more or less interchange
able with strength, although neither was clearly defined. However, probabili
ty was not seen as synonymous with rate or frequency. In fact, rate or frequency 
was not even seen as a measure of probability, although he w rote of some un
specified association that this dimensional quantity has w ith probability. Prob
ability was apparently to be simply inferred from the status o f the independent 
variable or from measures of responding.

Given these uncertainties, the basis for the im portance of the concept of 
probability to Skinner is not entirely clear. Although he referred to the difficul
ties of describing the all-or-none aspect of single instances of behavior and 
offered probability as a continuous alternative, it is not evident how this solves 
the referential problem. His concern for dealing w ith the single operant 
response alerted him to the fact that the existing scientific verbal practice in
volving probability as a dispositional quantifier was appropriate to his own

Emi
Realce

Emi
Realce

Emi
Realce

Emi
Realce

Emi
Realce

Emi
Realce

Emi
Realce

Emi
Realce

Emi
Realce

Emi
Realce

Emi
Realce

Emi
Realce

Emi
Realce

Emi
Realce

Emi
Realce

Emi
Realce

Emi
Realce

Emi
Realce

Emi
Realce

Emi
Realce



58 READING 5

purposes. In almost all cases, his earlier term , response strength, could simply 
be replaced by response probability w ithout changing any of the implications. 
The definition of probability was problematic for Skinner, but no more so than 
for physicists. Furtherm ore, probability seemed much less susceptible to in
terpretation as an internal entity or intervening variable.

A Survey o f  C ontem porary O pinions

The term probability is ubiquitous in all areas of the contem porary literature 
of behavior analysis. The recent survey of the editorial staff of four major jour
nals in the field already mentioned (Johnson & Morris, 1987) certifies the extant 
definitional problems. When respondents were asked to indicate agreement with 
one or more of four general meanings that w ere listed, 54 % checked relative 
frequency o f  response, 41%  checked a num ber obtained fr o m  observed data  
to predict fu tu re  behavior , 25% chose strength o f  response, and another 25% 
selected a degree o f  belie f or opinion regarding the occurrence o f  a response.

In addition, 23% either checked an other category or qualified the previ
ous categories. Johnson and Morris described these additional responses as fall
ing into three subcategories. The first subcategory included “ restatem ents in 
terms of likelihood, chance, tendency, belief, and response potential, w ith em
phasis on the conditions, contexts, and circumstances controlling the occur
rence of a response” (1987, pp. 9-10). A second subcategory expressed 
response probability as “ a ratio of target responses relative to opportunities 
to respond . . . [which] should then be used to aid in the prediction o f future 
behavior, based on  degree of situational similarity” (p. 10). A third grouping 
o f reactions suggested that “ it would be m ore effective to note the conditions 
under w hich the verbal response ‘response probability’ occurs, rather than at
tem pt to specify any particular definition” (p. 10). In addition, remember that 
40% of the 92 respondents checked tw o or more categories.

The second question of the survey asked if probability was a useful concept 
and why. Although 71% said that it was useful in behavior analysis, 16% said 
that it was not and 13% indicated that it could be useful if properly defined 
but was not useful because it was “ conceptually confusing” and “ inexact.” 
It is striking that m ore than a quarter of this respected sample of the field’s 
leaders felt that such a widely used term was not useful. Furtherm ore, the rea
sons reported by Johnson and Morris that w ere offered by some of the re
spondents for their answers to these tw o questions indicated a broad and 
conflicting variety of opinions on this definitional issue.

DEFINITIONAL POSSIBILITIES

xD im en sional Q uantity

In the science of behavior, probability most often refers to some aspect of a 
response class, therefore, it is natural to consider w hether it can be classed 
as a dimensional quantity. A dim ensional quan tity  is a quantifiable aspect of
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a property of a natural phenom enon and should not be confused w ith a unit 
of measurement, which specifies a fixed and standard magnitude or amount 
of a quantity (see chapter 5 in Strategies a n d  Tactics).

Can probability qualify for membership? What are the requirem ents for a 
dimensional quantity? There would seem to  be tw o requirem ents for any can
didate: (a) its relation to one or m ore fundam ental properties of the phenom e
non must be clearly traceable, and (b) it must be quantifiable in terms of a fixed 
and standard unit of measurement. Perhaps it should be added that any candi
date should not be redundant w ith a quantity already well established.

What, then, is the property (or properties) of behavior that probability quan
tifies? In order to examine this question, we must turn away from quantitative 
definitions to the colloquial connotations of the term . Probability generally 
refers to uncertainty surrounding the occurrence o f an instance of a response 
class. Of course, the occurrence of a single response depends on the status 
at any mom ent of all of the variables that influence it. Thus, probability would 
seem to refer more to a coalition of controlling variables than to behavior direct
ly. Uncertainty just does not seem to be a legitimate, fundam ental property 
of behavior upon which probability can define its status as a quantity, however. 
Some reassurance about this conclusion comes from the other natural sciences, 
which have not found the need for a property of uncertainty. O ther possible 
properties that probability alone could be said to quantify are simply not evi
dent, suggesting that by this criterion probability is no t a quantity.

Remember, however, that a quantity can reference multiple properties, as 
does frequency or rate, which is related to both tem poral locus and repeat
ability. On the chance that probability could qualify in this manner, let us con
sider the second (and third) requirement(s) for a dim ensional quantity. What 
would be the fixed and standard unit of m easurem ent that w ould specify the 
amount of probability present in any instance and that is not already used to 
measure any other dimensional quantity? The most comm on answer (accord
ing to the Johnson & Morris 1987 survey) is relative frequency o f  a  response. 
However, there are two problems w ith this candidate.

First, this expression raises long-standing confusions about the ietm  frequen
cy. Following colloquial connotations, the term in the natural sciences most 
often refers to a quantity describing the occurrence of an event in relation to 
time, as is suggested by its unit of measurement, cycles per unit time. Thus, 
the term  relative frequency  might seem to refer to a ratio of tw o frequencies. 
However, the term is also sometimes used to refer to num ber or count, espe
cially in the fields of philosophy, mathematics, and statistics. It is this usage 
that tends to appear in discussions of probability. The customary referent of 
the term  relative frequency, then, is a ratio of tw o counts, which might be 
more clearly described as relative count.

This awkwardness aside, there is second com plication that is not so easily 
remedied. According to basic mathematics, w hen tw o measures sharing the 
same unit of measurement are expressed as a ratio and divided, the units cancel 
and the quotient is a unitless number. At this point, all reference to the origi
nal dimension is lost, which creates a number of potential interpretative compli
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cations w hen attem pting to describe behavior. So, w hether probability is de
fined in terms o f rates (frequencies) or counts, the result is a dim ensionless 
quantity. Although dimensionless quantities have their place in science, refer
ence to fundam ental properties is not one o f them.

There is still another possibility. Probability could be defined as a dim en
sional quantity referencing tw o or more established properties of behavior and 
measured in terms of a ratio of tw o unlike units of measurement, as is rate, 
interresponse time, and quarter-life, among others. The term  probability could 
be attached to a ratio that is presently unnam ed or in a shuffle of redefinitions 
of existing quantities.

For example, as Reading 4 points out, there are three obvious ratios in which 
some measure of countability serves as the num erator and some measure of 
time serves as the denom inator: (a) the ratio of countability to interresponse 
time, (b) the ratio of countability to duration, and (c) the ratio of countability 
to total session time (interresponse time and duration added together). The 
third ratio is how  response rate is often calculated in practice, presumably be
cause it does not require timing the onset and offset of each response. If this 
convention w ere retained, the other two ratios would be available for naming 
and empirical evaluation. The ratio of countability to duration might be called 
something like response continuity, and the similar ratio of countability to 
interresponse tim e might then be called response probability .

This could be defended as an official definition of probability as a dim en
sional quantity if only because it meets the criteria just listed. However, this 
ratio is already called rate (or, sometimes, frequency), even though this label 
insures some confusion w ith other count/tim e ratios. Furthermore, the term 
probability is so ubiquitous and ill-defined, both in science and in the lay cul
ture, that simply redefining it might be doom ed to failure. In other words, 
this “ p roper” usage might be overwhelm ed by unofficial connotations, much 
as has been the case w ith many technical terms in behavior analysis that also 
have broad colloquial usage. This is widely agreed to be a serious problem, 
and it would seem to unwise to ignore it here.

In summary, the term  probability could be arbitrarily defined as a dim en
sional quantity, though not w ithout raising questions and exacerbating present 
confusions. This may not be the best resolution to the definitional issues sur
rounding this term, how ever. A thorough consideration of these issues must 
probe other directions.

M athem atics and P h ilo sop h y

The concept of probability is hardly a conundrum  for the field of behavior 
analysis alone, of course. Philosophers and mathematicians have been argu
ing among themselves about the meaning of probability since at least the 17th 
century, and any sort of general agreement still seems centuries away (Dur
bin, 1968).

For example, Salmon (1966) surveyed five leading interpretations of p rob
ability and assessed each according to three criteria of adequacy. The classical
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or a priori definition originated w ith Simon Laplace and is one of the oldest 
and best known; it defines probability as the ratio of favorable to total, equal
ly possible .cases and is the basis of theoretical mathematical probability. The 
subjective interpretation is that probability is simply a measure of a degree of 
belief. The logical interpretation approaches probability as the degree of con
fidence that would be rationally justified by the available evidence. The per- 
sonalistic theory of probability

allows . . . that the fundamental probabilities are purely subjective degrees of 
actual belief, but the probability calculus sets forth relations among degrees of 
belief which must be satisfied if these degrees are to constitute a rational system. 
Although the fundamental probabilities are subjective, their relation to derived 
probabilities is objective. (Salmon, 1966, p. 79)

Finally, the frequency or a posteriori interpretation defines probability “ in 
terms of the limit of the relative frequency of the occurrence of an attribute 
in an infinite sequence of events” (Salmon, 1966, p. 83). This approach thus 
requires probability to be defined empirically: As a result of an actual series 
of tests, probability is the ratio of the num ber of times an event occurs to the 
number of trials. Not surprisingly (and for reasons that only philosophers and 
mathematicians could understand and appreciate), Salmon finds all of these 
interpretations of probability inadequate according to one or another of his 
criteria.

Philosophical hair-splitting aside, three broad and easily distinguishable tradi
tional definitions of probability are commonly identified: classical (a priori), 
frequency (a posteriori), and subjective (Durbin, 1968). What implications do 
they have for use in a natural science o f behavior? The classical approach (a 
ratio of favorable to total, equally possible cases) is easiest to assess. This defi
nition requires assuming that the cases under consideration are equally possi
ble. Although formal evidence could be marshalled in support of such a 
contention, the evidence is likely to be extremely hard to come by, even for 
common examples such as tossing coins (see Kolata, 1986). In the case of be
havior as a subject matter, there is often good reason based on w hat is know n 
about behavior in general or about a particular circumstance to avoid the as
sumption of equal possibility, although the available evidence may fall short 
of satisfying the requirements of the frequency definition of probability.

For example, most would agree that assuming an individual is equally like
ly to chose each of the four alternatives of a multiple choice question is quite 
risky, although there are unlikely to be any data available for a particular in
dividual and a particular question. Therefore, calculating probability in this 
manner essentially requires ignoring any past or current evidence about actu
al occurrences of the events of interest. Nevertheless, w hen data are unavail
able, this formulation of probability may offer a better prediction than the 
subjective approach, although the opposite may be true.

Although the classical definition of probability may have some utility to 
mathematicians, w hen there arc any data pertinent to calculating the ratio be
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tw een favorable and total cases, it is tem pting to leave the a p riori calculation 
behind in favor of the a posteriori or frequency approach. Although this defi
nition has the advantage of an empirical basis (the ratio of the num ber of oc
currences to the number of trials or opportunities), there are still complications. 
For instance, although it is easy enough to determ ine the num ber of occur
rences of a response (presuming a proper definition of the response class and 
accurate measurem ent procedures, which should not be very quickly p re 
sumed), how  does one determ ine the denominator?

For this value, the frequency definition requires an infinite sequence of 
events (responses) whose relative frequency is know n to approach a limit value. 
In the case of behavioral probabilities, the questions are: (a) How must this 
class of events be defined and measured? and (b) How can we determ ine this 
value? In the case of a discrete trials procedure, the answers seem obvious— 
count the total num ber of trials. However, this tactic assumes that each trial 
is, in fact, an identical opportunity  for a response and that the trials are the 
only opportunities for that response class. Even more difficult in this regard 
(and more common) are “ free operant” circumstances in which there are no 
trials or well-defined opportunities that can be unambiguously counted. Worse 
still, what can be done w hen the need is to calculate the probability of a single 
response? Finally, the whole business of estimating the limit o f the relative 
frequency of an infinite sequence solely on the basis of observations of the 
initial portion of the sequence bothers philosophers m ore than a little bit 
(Salmon, 1966). These are not simple issues, although this is apparently the 
most common definition of probability in behavior analysis (Johnson & Mor
ris, 1987).

At this point, the subjective definition of probability may appear a rather 
weak alternative for scientific purposes, in spite o f the difficulties of the a p ri
ori and a posteriori interpretations. It allows no formal calculation on the ba
sis of principle or fact and therefore does no t perm it technical applications. 
Nevertheless, even though the subjective definition may never define the ver
tical axis of a graph, it may well be the most used sense of probability in daily 
scientific discourse; in fact, this ubiquity should suggest greater im portance 
than its nonquantitative nature implies.

The reason for our com fort w ith a subjective assessment of probability may 
lie w ith its origins in our accumulated experience. Subjective probabilities are 
as empirically based as are frequency-based probabilities; it is merely the source 
of control over the tw o types of assessments that differs. In the case of rela
tive frequency probability, the control is narrowly restricted by the definition 
of the ratio to our experiences in determining the num erator and denom ina
tor. For subjective probability, control is exerted by any o r all o f our ex
periences w ith the response class and circumstances in question as well as our 
accumulated personal and professional experience w ith behavior, each in a 
sense w eighted in a nonexistent formula defined by our unique amalgam of 
experiences.

The lack of a formal m ethod of calculation is both valuable and harmful. 
It is valuable in that w e can take into account any variables that w e know  are
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relevant to the assessment and weigh them  as experience and present circum
stances dictate. It is harmful in that we are likely to be influenced by factors 
that worsen the accuracy of the prediction, such as our desire for a certain 
outcome.

These interpretations of the concept of probability are about all the help 
that can be expected from the disciplines of mathematics and philosophy, 
although this is admittedly an extrem ely brief sum mary of w hat are very com
plex positions in a large literature. Of course, neither mathematicians nor 
philosophers w ork in the “ experim ental trenches” every day, so it might be 
expected that their perspectives about the concept of probability w ould be 
somewhat different from those of practicing scientists. W hat uses of probabil
ity are common in the natural and social sciences?

Natural and Social Sciences

N a tu ra l Sc iences. An exam ination of a variety of in troductory  texts in 
physics, chemistry, and biology shows not even a single definitional m ention 
of probability. The few references to the term  make merely passing m ention 
of probability in particular contexts, such as to w eather forecasting. Further
more, books addressing the technical aspects o f measurem ent in the natural 
sciences also make little m ention of probability (e.g., Bridgeman, 1922; Cher- 
tov, 1964; Ipsen, I960). In fact, the only general and substantive discussions 
of probability in the context of scientific m ethod are in philosophy of science 
texts, w ritten by philosophers specializing in this area (e.g., Kyburg, 1984).

Research journals “pain t” a similar picture. For instance, an informal ex
amination of Science, one of the most respected multidisciplinary journals in 
the world, shows only infrequent references to probability. They encompass 
all three common interpretations (classical, frequency, and subjective), but most 
of these few references occur in the context of inferential statistical interpre
tation of experimental data.

S oc ia l Sciences. Although, the term probability appears much more often 
in the literature of the social sciences, this greater usage is alm ost entirely due 
to the pervasive role of inferential statistics in the social sciences. Tests of 
hypotheses are, in principle, made by selecting a subjective probability for 
which it will be accepted that the obtained difference betw een the sample 
means occurred by chance (actually, that the difference is due to factors other 
than the experimental treatment). Methodological texts are usually either 
primers for statistical training (e.g., Neale & Liebert, 1980) or fully developed 
manuals for teaching the rationale and procedures of inferential statistics (e.g., 
Kerlinger, 1986). References to probability are therefore com m on in these 
research literatures, psychology being a good example as the epitome of a well- 
developed experimental social science. However, if all of the statistical uses 
of the term are put aside, there again remain only the same scattered and very 
infrequent references to probability observed in the natural science literature.

These observations of the paucity of substantive uses of probability in every
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day science are revealing. They suggest that the concept of probability may 
be far less useful and im portant to the conduct of science than philosophers 
would have us believe. In particular, the lack of w idespread usage of techni
cal applications o f the concept (classical or frequency definitions), even in an 
idiosyncratic manner from one field to another, urges the conclusion that there 
may be little need to refer to ratios of this son  and that such ratios do not 
describe relations of great usefulness.

This assessment contrasts dramatically w ith the role of dimensional quanti
ties in science, especially in the natural sciences. These quantities, also often 
in the form of ratios, are at the heart of scientific measurement, presumably 
because they represent aspects of the phenom ena under study that are both 
real and demonstrably useful. Uses of the term probability, on the o ther hand, 
only partly refer to the subject matter under study. The frequency definition, 
for example, has as its num erator a real aspect of the phenom enon (its count- 
ability), but the denom inator’s definition in terms of “ opportunities” is actu
ally a reference to an unknow n conglom eration of influences that constitute 
such opportunities. In other words, unlike dimensional quantities, probabili
ty does not narrowly refer to real aspects of a phenom enon, and scientists seem 
to find relatively little practical use for the concept in their routine conduct 
and interpretation of experiments.

If the concept of probability has limited utility for working scientists for 
this reason, perhaps it will be fruitful to examine the meaning of the concept 
in terms of the behavior of scientists rather than the behavior of their subject 
matter. Indeed, probability is fundamentally a behavioral concept, and any 
responsibility for its meaning must be borne by the science whose subject matter 
includes the behavior of scientists.

Verbal B ehavior

From the perspective o f a science of behavior, probability can be most useful
ly analyzed as verbal behavior. Certainly, probability does not exist in a phys
ical sense, as does a chair. This does not mean that there is nothing real that 
is referred to by the term, however. The measure of the countability of a 
response class that serves as the num erator in the relative frequency defini
tion is real enough as a quantifiable dimension of behavior, although it is more 
somewhat more difficult to define the real dimension referred to in the denomi
nator by trials or opportunities. W hatever the w ord may refer to, however, 
probability is also a verbal response. As such, w hat are its sources of control?

First, in the cases in which probability has been calculated according to a 
formal definition, the verbal response is a tact of those calculations (see Skin
ner, 1957b, chapter 5). However, it seems that the most everyday uses of the 
term are not this narrow. Colloquially, the response may be a tact of unpredict
ability or uncertainty, presumably due to lack of strong control by one or more 
variables. We say that “ He will probably get angry” w hen the variables that 
will control his getting angry arc unknown, either in general or at least for 
the m om ent in question. If a particular influence over his getting angry was
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know n to be both sufficient and present, we would drop the “ probably” and 
merely predict that “He will get angry.” This usage is m odulated by crude ef
forts at quantification, as in “ There is little chance that Mary will arrive on 
tim e,” “ It is quite probable that John will be here ton igh t,” or “ It is highly 
unlikely that Jane will call you .” This function of the response probability may 
be as a descriptive autoclitic of the strength of the speaker’s tact, as in “ T hat’s 
probably Bill” or “ I’ll probably be there .”

Michael (1988) suggested that it w ould be helpful to viewr probability from 
a dispositional perspective. For Michael, a dispositional term is a “ type of func
tional relation where the form of a speaker’s response is not primarily con
trolled by an immediately prior stimulus situation, but rather by other verbal 
and nonverbal stimuli, some possible p rivate” (p. 2). He analyzes Skinner’s 
references to response probability in this context, concluding that, for Skin
ner, “ it became the dispositional concept of choice, functioning as a more pre
cise replacement for operant strength” (p. 16). However, Michael’s overriding 
concern w ith probability is that the disadvantages associated w ith its formalis
tic, philosophical, excess baggage make it less preferable than response strength.

SUMMARY AND RECOMMENDATIONS

What, then, has this review of the scientific uses of the concept of probability 
shown? It has revealed that there are three, more-or-less official definitions 
of probability that are recognized by mathematicians, philosophers, and scien
tists. Two of the three refer to formulae that express a simple ratio. One ratio 
is based on a count of the possibilities of an event’s occurrence in relation to 
the sum of those possibilities plus a count of nonpossibilities, all made without 
taking into account any influences that might affect either class of events. This 
is the classical or a priori definition, and its formal uses are fairly narrowly 
limited to mathematics and philosophy, presumably because anyone else would 
prefer biasing the counts w ith any pertinent evidence. This influence is fo r
malized in the second ratio, in which the num erator and denom inator come 
from counts of actual occurrences of the classes of events under supposedly 
similar, if not identical, circumstances. This is the relative frequency or a 
posteriori definition.

Although only this latter usage is comm only referred to as empirical in na
ture, both are actually empirical to the same degree. In both cases, counts are 
made of the events and nonevents of interest; they are merely made under 
different circumstances. Of course, it cannot be know n which set of circum
stances will provide the best prediction in any particular case because the vari
ables that will determine the actual outcom e are unknow n either in general 
or in that instance. This lim itation suggests that these interpretations of p rob
ability are not really different from the subjective meaning—a degree of be
lief. Here, there is no pretense of quantification. Under control of a 
conglom eration of influences stemming from experience, one just attaches an 
adjective, either qualitative or quantitative, to the term. This definition, too, 
is thus importantly empirical in nature.
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. The im portant observations regarding these traditional definitions of p rob
ability is that

1. They are all empirical.
2. Their m ethods of empiricism do not make one inherently superior to 

the others in any or all cases.
3. They all attem pt to predict events under conditions of some ignorance.
4. This prediction is controlled by an assessment of, no t just the events of 

interest themselves, but the variables that influence them.
5. They do not, therefore, refer solely to quantifiable dimensions of the 

phenom enon.

This last observation suggests difficulties in any effort to add to these tradi
tional definitions a further definition of probability as a formal quantity. In
stead of narrowly referring to real aspects of the phenom enon, the definition 
actually describes the behavior of the experim enter interpreting the results. 
Although one could define probability as the ratio o f countability to  inter- 
response time, such a definitional direction w ould seriously conflict with more 
well-established definitions. Furthermore, it w ould be difficult to eliminate 
other existing uses o f the term.

The fact that scientists seem to have little practical use for the concept of 
probability might be predicted on the basis of the aforementioned list of charac
teristics. Probability is simply a less useful concept in daily scientific practice 
that the frequency of the term in informal scientific discourse might suggest. 
It does not clearly and narrowly refer to im portant features of a natural 
phenom enon. Instead, it indirectly refers to unknow n variables and conditions 
and thus serves more colloquial than technical functions in the special lan
guage of science. From the perspective of Moore (1981), the term may be more 
under the control of discriminative stimuli and reinforcers in the general cul
tural (social) environm ent than under control of discrim inative stimuli (oper
ations and contacts w ith data) and reinforcers (outcomes leading to prediction 
and control) in the scientific environment.

This analysis leaves us w ith some rather behavioral observations about prob
ability. An exam ination of the term ’s use makes it clear that it is like the term 
chance—a synonym for our ignorance. As a analysis in terms of verbal behavior 
suggests, it is either a tact or an autoclitic related to uncertainty, and the rea
sons for such uncertainty lie in a lack of knowledge of variables that w ould 
allow certainty. More behaviorally, it seems to refer to  a lack of control over 
our verbal behavior by those variables that actually contro l the phenom enon. 
W hatever label serves this function will never qualify as a useful scientific term 
because its emission as a verbal response cannot be consistently controlled by 
real features o f the phenom enon. As Skinner poin ted  out, “ Scientific verbal 
behavior is most effective when it is free of multiple sources of strength” 
(1957b, p. 420).

Therefore, it would seem most helpful for the developm ent of the natural
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Gostei da interpretação do J. Moore.
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science of behavior for this concept to be avoided as a technical reference. 
For example, w hen a ratio of the num ber o f responses to the num ber of op
portunities is described, proportion  seems a better label than probability. Refer
ences to probability may best be left to the subjective or colloquial meaning 
of “ a degree of belief.” In fact, because this modal use of the term seems cul
turally controlled, it is unlikely that this use could be changed by fiat anyway. 
In any case, it is im portant that the term no t masquerade as som ething more 
than it is, and it is no more than a reference to the speaker’s uncertain ty .2

2An excellent discussion o f probability by Johnson and Morris (1987) written independently 
of, but at the same time as, this paper reached a similar cautionary conclusion regarding the term’s 
use by behavior analysts.
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The Problem of 
Limited Accessibility

A GENERAL STRATEGY

Most often, the portions of behavior and environment of scientific interest are 
public or accessible by more than one person. However, the experim enter’s 
interest may sometimes lie with investigating functional relations betw een 
responses and environm ental events, either or both of which are private or 
accessible by only the subject.1 These special circumstances present some seri
ous problems for a scientific approach to experim entation built upon control 
and replication. The caution in this area prevalent among some behavioral 
scientists today may be a justifiable reaction to the abuses that characterized 
earlier approaches to the study of private events and that are still w idespread 
in the social sciences.

H istorical P erspective

Given its origins in philosophy and its special, inherited concern w ith the 
epistemological problem, 19th- and early 20th-century psychology is largely 
defined by attem pts to study private events and various attendant 
“ phenom ena”—consciousness, the mind, awareness, and so on. An overview 
of this mammoth effort (e.g., Boring, 1950) makes clear that historical a tten
tion should be focused on two principal aspects: content and method. Fur
thermore, although little lasting illumination has been cast on the chosen subject 
matter, certain methodological considerations have substantial bearing on  con
tem porary behavioral approaches to the study of private events.

'The conceptions in chapter 17 of Skinner (1953) are basic to this reading.
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A GENERAL STRATEGY 6 9

The distinction between m ethod and content is perhaps best typified in the 
work of E. B. Titchener (1867-1927). According to Boring (1950), Titchener 
recognized,that a particular stimulus w ould occasion different observational 
reports depending on the poin t of view the observer took. If the observer 
took what might be called the “physical” point of view or set, the stimulus 
event was described in detached, objective terms. Lacking this set, the ob
server described the stimulus event in m ore subjective terms, including refer
ence to feeling quality. Verification of the operation of these different sets 
was obtained in tests of tw o-point thresholds, in which a blindfolded ob
server was asked to report w hether one or tw o needle points were being ap
plied to the skin. At a given physical separation of the tw o points, the sub
ject responded differently w hen asked to report w hat “ is” from w hat “ it 
feels like.”

Recognizing this characteristic of hum an observers, T itchener could train 
his observers to report only w hat “ is” and thus act as neutral transducers of 
the sensory consequences o f controlled stimulus events. This is similar to the 
demands imposed on an observer of private stimuli and is exactly the demand 
placed on any scientific observer of public events, w hether they are instru
ment dials, cells on a slide, or responses.

A second methodological characteristic o f certain early, psychological tra
ditions closely resembles the inferential practices of modern physics. Although 
W undt’s “ mental chronom etry” mentioned in Reading 3 did not produce data 
of unimpeachable interpretability, it was, nevertheless, an attem pt at descrip
tive measurement of phenom ena whose existence and influence can only be 
inferred from effects observed under carefully controlled experimental con
ditions.

Millikan’s well-known oil drop experim ent furnishes a physical illustration 
of this tactic (Miller, 1972). The charge of a single electron is measured as a 
deductive consequence of careful measurement and control of all but one vari
able, whose effects are then quantified in terms of variation in the known 
parameters. More simply, electrons themselves are know n only by their ef
fects on photographic plates and cloud chambers, not by direct observations; 
yet the operations by which these researchers detect effects are sufficiently 
controlled and replicable as to leave little doubt as to the existence and relia
bility of the underlying phenomena.

Of course, the precision of idemnotic measurement in m odern physics is 
sufficient to make the existence of an event such as an electron a compelling 
inference for the sake of completeness and parsimony. As indicated in Read
ing 3, the early attempts at quantitatively demonstrating various mental 
phenom ena did not enjoy the benefits afforded by precise idemnotic meas
urement, and the scientific status of these “ phenom ena” remains in dispute.

These two strategies, proper training and instructing of observers and deduc
tive inference from observable functional effects, hold prom ise as components 
of a natural scientific strategy for the study o f behavioral events whose acces
sibility may be severely limited. In order to consider properly the role of these
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7 0 READING 6

com ponents in such a general strategy, we first consider the dim ensions of 
the problem  posed by limited accessibility.

A ccessib ility  C ontinua

In order to discuss the m ethodological difficulties involved in investigating 
relations betw een behavioral and environm ental events that are difficult to 
detect, it is useful to propose a public-private continuum  of accessibility for 
both behavior and the environm ent. These continua are depicted graphically 
in Fig. 6.1. In our usage, the concept of accessibility is a com bination of the 
likelihood that the event exists at all coupled w ith the difficulty of observing 
it, given that it does exist.

Describing behavioral and environmental events in terms of an accessibili
ty continuum underlying the discrete categories of public and private provides 
a dim ension (susceptible to at least ordinal measurem ent) for analysis of a 
problem  that has often been viewed as largely semantic or philosophical. The 
terms p u b lic  and priva te  refer to adjacent nominal regions of the accessibility 
dim ension, much as the terms ho t and cold describe portions of the dim en
sion of tem perature. Even though for any single observer a particular event 
at any point in time either is or is not detectable, over a num ber of m easure
m ent occasions the accessibility of the event in question may vary for a varie
ty of reasons within or across public or private regions.

One explanation for this variation in accessibility lies in our conditioning 
history. We may not detect certain events because w e have not been condi
tioned to respond to a particular class of stimuli. A skilled w orker such as an 
inspector in a manufacturing plant has been trained by the employer and con
ditioned by natural contingencies to detect and respond differentially to stimuli 
that are indeed public, but that others would not be able to detect in the ab
sence of such a conditioning history.

In another case, a class of events such as the behavior of swallowing may 
fall in the public region for any observer w ho is present (m ovement of Adam’s 
apple invariably accom panies the internal m ovem ents that we call swallow-

Behavioral Events Environmental Events

Measurement occasions— ► Measurement occasions— ►

FIG. 6.1. Schematic representation of accessibility continua for behavioral and 
environmental events over measurement occasions.
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A GENERAL STRATEGY 71

“  ing). However, it might strain the devotion of the m ost ardent observer to re 
main in a position to see every such m ovem ent by a subject for extended peri
ods of tim e.T he limitation on accessibility here is clearly only logistical, but 
it remains a limitation nevertheless.

Finally, Skinner (1953) poin ted  out the th ird  justification for the schematic 
representation in Fig. 6.1: “ The line betw een public and private is not fixed. 
The boundary shifts w ith every discovery o f a technique for making private 
events public” (p. 282). Advances in scientific measurement technology repeat
edly expand the accessibility o f the universe of public events by augmenting 
our sensory capabilities through magnification (in a generic sense) of some 
aspect of the event. Many behavioral events that occur inside the skin are rou 
tinely made public by measurement advances originating in medicine. These 
advances constitute a rich opportunity  for expanding the frontiers of the 
science of behavior.

It should be clear, then, that the public or private nature of a behavioral 
or environm ental event is not a characteristic of the event itself. Rather, this 
reference to accessibility is a statem ent about the likelihood of an observer’s 
behavior of detecting or responding to the event. The fact that an event can
not under some circumstances be detected  does no t mean that the event is 
inherently different from events that can usually be detected, nor does it mean 
that the event has the “ property” of being private. The most parsim onious 
assumption is that the “private” event is in no way different from “public” 
events and that any supposed difference lies only in the degree to which we 
have access to it. i

The major benefit of this perspective lies in how  it guides the investigation 
of events whose occurrence is difficult or presently impossible to detect. Be
cause the assumption is that such events are not different in their basic nature 
but merely raise problems of detection, the m easurem ent problems forced by 
selecting such phenom ena for study are no t in any w ay different, regardless 
of traditional or a priori assumptions about the phenom ena or the reasons for 
their inaccessibility.

Figure 6 .1 suggests that the public and private regions of accessibility apply 
to both behavioral and environm ental events. There are therefore four possi
ble circumstances of measurement distinguishable by this analysis, and each 
requires a som ewhat specialized strategy for achieving accurate measurem ent 
and functional analysis. Let us examine these strategies individually.

P u b lic  S tim u l i  a n d  P u b lic  R esp o n ses . When bo th  the subject’s m ove
ment and the part of the environm ent to which it is related are observable 
by the experim enter and others, there are no special difficulties o ther than 
the considerations discussed in Strategies a n d  Tactics. It is appropriate that 
public events have been the predom inant focus of early behavioral research 
and fortunate that the demands for technology have been of a similar nature.

P u b lic  S t im u l i  a n d  P r iv a te  R esp o n se s .  W hen the functional relation 
of interest involves stimuli that are public but responses that are private, scien
tific investigation might seem impossible. In fact, careful behavioral research
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72 READING 6

ers using nonhum an subjects in controlled laboratory settings routinely draw 
conclusions about private behavioral events w ithout hesitation. They study 
visual or auditory behavior of pigeons or rats or monkeys, for example, and 
accept the data as accurately reflecting private visual or auditory responses 
in spite of the direct inaccessibility of these events to the experimenter. They 
do this by teaching the animal to make a particular public response to ex
perim enter controlled presentations of relevant environmental stimuli. Con
fidence in the accuracy of the public response is gained by the orderliness of 
correlations betw een the emission of the public responses under successive 
m anipulations of the environmental stimuli.

For example, a pigeon may be exposed to contingencies in which pecking 
a key results in the occasional presentation of grain only if the key is green; 
if the key is red, no grain ever appears no matter how  much pecking occurs. 
Once this pattern is established and the pigeon only pecks w hen the key is 
green, w e may safely infer that the private response of “ seeing green” is oc
curring. The experim enter may then gradually change the color of the red key 
(holding other dimensions such as intensity constant) until its wavelength is 
very close to green and note w hen the pigeon resumes pecking. In this fashion, 
the pigeon’s ability to differentiate or “ see” colors in the spectrum can be as
sessed. This tactic is now  commonplace, and through it we have learned about 
the sensory capabilities of various species in precise detail (Blough, 1966).

The tactic is used in an identical fashion to measure the same private 
responses to auditory and visual stimuli in humans of all ages. We teach a pub
lic response (such as hand raising or vocalizing) appropriate to the subject and 
the task and vary different characteristics of the stimuli (intensity of auditory 
stimuli or size of visual stimuli) in a systematic sequence. We trust the result
ing evidence of the unobserved private responses (hearing and seeing) enough 
to prescribe prosthetic devices (hearing aids and glasses) that could be harm
ful if im properly fitted.

There is, then, an underlying strategy for investigating behavioral events 
of limited accessibility that has demonstrated success. First, train or bring un
der stimulus control a public response appropriate to the subject and task. Then 
arrange to bring that response under the control of a particular stimulus that 
it also accessible to both the subject and the experimenter. The dem onstra
tion that the resulting public responses are indeed highly correlated w ith the 
private responses depends on the orderliness of the resulting data in relation 
to  repeated m anipulations of the public stimuli.

P riv a te  S tim u li a n d  P u b lic  R esponses. The third combination includes 
responses of interest that are public but stimuli that are inaccessible. As be
fore, this does not present an insoluble problem to the investigator. The well- 
respected tactic is to take advantage of the relation betw een the private en
vironm ental event and a public one. For example, consider a patient report
ing repeated migraine headaches to a physician. The physician is interested 
in minimal use of pharm acologic agents and must therefore have confidence 
in the relation between the patient’s reports of pain and actual pain. After noting
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A GENERAL STRATEGY 73

that aspirin and other mild drugs do not change the patien t’s reports of pain, 
the physician takes advantage o f the well-known effects of m orphine by ad
ministering a substantial dose under controlled conditions (taking care not to 
inform the patient of possible effects). If the patient reports the disappearance 
and return on the pain consistent w ith the known time course of the d rug’s 
analgesic effects, the physician’s confidence in the relation betw een the pub
lic response and its prom pting private stimulus is increased.

It is im portant to caution against falling into a trap. Successfully applying 
this tactic requires a know n and demonstrable relation betw een some public 
environmental event and its private counterpart (in this case, m orphine and 
its effects on pain). This is not always available, and the researcher must never 
be in the position of hypothesizing the relation or, w orse yet, the private stimu
lus itself in the absence of any such knowledge.

P r iv a te  S t im u l i  a n d  P u b lic  R esp o n ses . Finally, we may consider the 
case in which the investigator is primarily interested in functional relations 
between responses and stimuli, both of which are observable only by the sub
ject. If this was truly an unalterable situation, it would indeed pose a problem  
at present no t approachable scientifically. The tactic in the two previous cases, 
in which either environmental or response events w ere inaccessible, was to 
make them public by applying m easurem ent technology or by selecting other 
stimulus or response events whose correlations w ith the private events are 
either know n or can be clearly demonstrated. Combining those tactics may 
move doubly inaccessible relations into the scientific arena so they can be sub
jected to the same quality of analysis as o ther behavioral phenom ena. The fol
lowing laboratory example provides an especially creative and rigorous attack 
on the problem of inaccessibility o f both stimulus and response events.

In an ingenious and elaborate series of experiments w ith rhesus monkeys, 
Adams and his co-workers (Adams, Hall, Rice, Wood, & Willis, 1975) succeeded 
in reproducing by electrical means the private stimulus correlates of specific 
public stimulus displays. These investigators developed a complex procedure, 
of which the following is a simplified variation. Monkeys were initially taught 
to respond on one of three levers depending on w hether one, two, or three 
dots appeared on a screen. If anything else (or nothing) appeared on the screen, 
the animal pushed a fourth lever. Appropriate lever responses were reinforced 
w ith food. At this stage, the experim ent resembles the pigeon experim ent al
ready mentioned, in which the private response of seeing is arranged to occa
sion key-pecking responses.

Adams and his colleagues w ent further, however. After the m onkey was 
trained to a high criterion of accuracy (always pushing the correct lever cor
responding to the number of dots displayed), a blackout condition was arranged 
and patterns of mild electrical stimulation were applied directly to the animal’s 
visual cortex. Varying the pattern  of this stimulation produced lever responses 
previously correlated with dot displays, supporting the inference that the pri
vate event previously produced by dots can be reproduced by cortical stimu
lation. The availability of the fourth lever allowed the animal to respond
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7 4 READING 6

w hen w hatever it “ sees” was no t dots, thus increasing confidence in the exis
tence of the private correlate of public dots.

It should be noted  that a two-stage inference is involved here, supported 
entirely by the am ount of control over the anim al’s lever pressing established 
in the training phase of the experiment. The first is the inference that the same 
private response of “ seeing do ts” is occurring in the blackout condition. The 
second is the inference that the private event evoked by the electrical stim ula
tion at least closely resembled that which previously occurred when dots were 
presented before the eyes in normal light. The fact that differential lever 
responding was observed in the absence of light but only in conjunction w ith 
cortical stimulation supports both inferences. The purpose of this research was 
to develop an electronic prosthesis for the blind. Refinement of the technique 
may lead to the ability to transform signals generated by a miniature televi
sion camera into cortical stimulation that will elicit private visual experiences 
that are tightly determ ined by w hat the camera sees.

The strategy underlying this research is similar to that used to investigate 
subatomic particles in m odern physics. The private events that the monkey 
sees are not formally assumed to exist beforehand. The existence of the p ri
vate events is the most parsimonious explanation of certain experimental ef
fects observed under conditions that render any other cause unlikely. In 
physics, w hen certain data can be reasonably explained only by positing the 
presence of an electron of a specific charge, that electron is identified by its 
effects. Similarly, the private stimulus, tw o dots, is identified by its effects on 
the m onkey’s behavior; it is unlikely that the monkey would, given this ex
perimental history, strike that lever if any other event w ere the result of the 
specific cortical stimulation.

If a problem o f double inaccessibility remains unapproachable by the tac
tics described, it may be time to call a tem porary halt for purposes of regroup
ing while gathering reinforcem ents or planning a flanking m ovem ent. 
Reinforcements in this context might include developing new  m easurem ent 
technology or new tactics for describing correlations w ith public events. A 
flanking m ovem ent might embody redefining the problem  of interest so that 
the question can be approached in a slightly different m anner that will still 
provide valuable information.

The work of M. K. Goldstein and his associates at the Gainesville, Florida, 
V eteran’s Administration Hospital provides an illustration of such a tactical 
redirection of efforts. A persistent logistical problem  in the delivery of health 
care services involved attempting to m onitor patients in their home and w ork 
environments to verify that they are complying with medical instructions (“ Get 
more exercise.” “ Take one of these three times a day,” etc.). This m onitoring 
has traditionally been attem pted through haphazard and infrequent contacts 
w ith the physician, usually initiated by the patient in response to renew ed dis
tress. Alternatively, some psychologists have relied on systematic verbal reports, 
either by mail-in questionnaires or telephone conversations, both necessitat
ing the researcher to make an ill-founded inference of correspondence between 
the verbal report and compliance behavior.
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A GENERAL STRATEGY 75

By approaching the verbal report itself as the initial phenom ena of interest, 
Goldstein experimentally analyzed its determ inants and developed techniques 
for establishing controlled calibration so that eventually, by exclusion, the only 
determinant of variability in the verbal report w ere the actual details of the 
recent behavioral history (Goldstein, Stein, Smolen, & Perlini, 1976; Stein, 
Goldstein, & Smolen, 1976). In other words, correspondence between the pub
lic verbal report and the less accessible behavioral history was arranged ex^ 
perimentally, rather than assumed or taken for granted.

W hatever alternatives are pursued, behavioral scientists should not be em
barrassed at the necessity of a tem porary halt in the face of measurem ent limi
tations. This decision has a long and respected tradition in the history of 
science. It is one thing to be on the leading edge of one’s science, but it is 
quite another to be beyond it. It is far preferable to admit the present limits 
of our knowledge and measurement technology than to ignore such limits and 
begin abandoning the strategies and tactics tha t have brought behavioral 
researchers this far.

Further Strategic C onsiderations

Although there are some superficial similarities, the general strategy proposed 
here for investigating phenom ena of limited accessibility is very different from 
that of W undt, Titchener, and the o ther early investigators w hose legacy re
mains evident in the contem porary social sciences. The problem  of limited 
accessibility was so fundamental to their interests that 19th-century research
ers were easily convinced that an entirely different subject matter had emerged, 
occasioning abandonment of the established m ethods o f the natural sciences. 
With hindsight, it is clear that this was an incautious overreaction to a problem 
of degree, not of kind. The troublesom e dem ands of limited accessibility do 
not relieve the requirement of firm adherence to all other demands of careful 
natural scientific investigation. The basic strategy rests firmly on a scientifi
cally sound technology of public measurem ent and dictates only supplemen
tary cautions, not variations in basic conceptions.

The active investigation of less accessible behavioral phenom ena has also 
properly lagged well behind the study of public behavioral events. This has 
allowed a considerable body of secure, basic knowledge about behavior to 
emerge as a foundation for research on less accessible events. The im portance 
of this chronology lies in the accumulated empirical support for the parsimoni
ous scientific assumption that private behavioral events differ from public ones 
only in their accessibility (Skinner, 1953). This cautious position w ould have 
to have been relinquished only w ith the utm ost reluctance, and such a sur
render now seems quite unlikely.

It is im portant to encourage a cautious respect for difficulties inherent in 
this kind of research. The central com plication stems from the difficulties of 
observing less accessible stimuli or responses. Solving this problem will require 
a more strenuous effort than the same investigation of more public phenomena.
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The general recom m endations in this reading must be accom panied by spe
cial efforts in response definition, observation, recording, and experim ental 
design.

As a final caveat, investigators should carefully consider w hether struggling 
w ith the problems of limited accessibility is unavoidably required by the 
research interest. An honest and searching examination of the research ques
tion will often lead to an alternate version that can be answ ered through ex
perim entation w ith public phenomena. Meaningful behavioral research is 
difficult enough w ithout borrowing unnecessary complications.

MEASUREMENT TACTICS

The rem ainder o f this reading concerns the problems of measuring responses 
of limited accessibility, regardless of the accessibility of the environm ental 
events to w hich they are functionally related. This is not intended to diminish 
the importance of precisely specifying such stimuli. It is normally assumed that 
the public stimulus dimensions of the experimental environm ent under inves
tigation will be adequately described, because this is usually a relatively easy 
task. If completely inaccessible stimuli must be measured, they can be inferred 
only from the results of measuring public responses. Thus, considering response 
m easurem ent tactics becomes both necessary and sufficient for dealing with 
the limited accessibility of stimuli as well. Moreover, in the event that both 
stimulus and response are fully inaccessible, the distinction becomes largely 
theoretical.

D efin ition  o f  R esponse Classes

Although defining less accessible response classes requires some special con
siderations, the basic tactics discussed in chapter 4 of Strategies a n d  Tactics 
with respect to publicly observable responses fully apply here. Additional con
siderations stem from the fact that, even though the researcher may have some 
conception of the behavior of interest, satisfactory access to its features and 
limits cannot be gained. This lack of access will hinder, not only applying 
proper definitional tactics, but the adequate training of the observer w ho must 
also serve as subject.

Although the ultimate solution to these difficulties rests w ith technological 
advances that will make such responses public, there are some special tactics 
that, in the interim, can ameliorate the situations. The first of these is to de
fine the response class as clearly, simply, and thoroughly as possible so that 
each instance.w ill be maximally obvious to, and detectable by, the subject. 
For example, a detailed definition of “smiling” will facilitate far more accurate 
self-observation than will a definition of “presenting a positive self image.”

Second, if the experimenter can also define private responses that have some 
kinds of public behavioral accompaniments, there will be the advantage of a
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source of corollary evidence about the occurrence of the behavior. For instance, 
the occurrence of a flatus emission may or may not be aurally detected by others 
depending.on topographical features of the response and the ambient noise 
level in the surrounding environm ent. However, there are inevitably 
malodorous byproducts whose public detectability is attested to by a variety 
of reactions on the part of those in the immediate vicinity .2

A third tactic is to define the inaccessible response class in such a way that 
the experimenter can arrange some kinds of tests to probe for verification about 
the definition the subject is using (as well as the occurrences of the behavior 
itself). To illustrate, a dental patien t’s personal definition o f “ cleaning teeth” 
can easily be evaluated w ith the use of plaque disclosing tablets that tint any 
plaque on the teeth so that it is easily detectable by the dentist. Because the 
dentist has little or no access to the patient’s teeth cleaning behavior, it is neces
sary to arrange a “probe” for the effects of that behavior that will be accessi
ble by both patient and dentist so that com m unication will have a shared, 
objective referent. These three general tactics are all means by w hich society 
teaches the individual to respond to his or her ow n private events (Skinner, 
1953). The researcher can use the same tactics to provide supplem entary in
formation about the definition of the private event that the subject is using.

In all cases in which the target response still remains essentially inaccessi
ble, it becomes necessary to train a publicly observable response and to estab
lish its correspondence with the private event. The characteristics of this public 
response are of the utmost importance in ensuring that the correlation between 
private and public responses is high. The general tactic is to arrange the en
vironm ent of the subject such that the emission of the private response (and 
no other event) becomes the occasion for the emission of the public response. 
The tactics here are somewhat different than in the m ore com m on case in 
which one wishes to bring a public response under the control of some public 
stimulus that precedes the response. Here, the private event that will serve 
the stimulus function is inaccessible to  the experimenter, thus preventing rein
forcem ent of the public response in the presence of the desired stim ulus.3

Criteria for selecting the public response that will be brought under control 
of the private event are that it be simple, discrete, clearly defined, and exclu
sively under the control of the private event. It should also be physically easy 
to emit w ith as little cost to the subject as possible. For example, recording 
responses on paper requires the subject, not only to have a pencil and paper 
available at all times, but also to get them out and make a notation each time 
the defined event occurs. On the other hand, pushing a button on a mechani
cal counter worn on the wrist is comparatively easy. Selecting a public response 
that involves such mechanical or electrical assists can be important in facilitating 
developm ent of control by the private event and, ultimately, accurate report
ing. The constant presence of a counter w orn on the wrist, for example, can

2For a more thorough discussion of this phenomenon, particularly those aspects bearing on 
detectability, see Carlin (1973).

}The reader should note the strategic communality with the situation discussed earlier in 
which the stimulus (the inaccessible response event) is private and the response is public.
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serve as a stimulus prom pting the subject to observe the private events that 
comprise a part of the functional definition of the public counting response. 
Furthermore, the topography of the selected recording response should be dis
tinctive, to endow  it w ith an extremely low  probability of occurrence except 
in the presence of the targeted private event. If, by virtue of special history 
or training, the public response is likely to  be made to other events, either 
public or private, some loss of measurem ent accuracy is almost inevitable.

D im ensional Q uantities and Units

All issues concerning the dimensional quantities of behavior and their cor
responding measurement units are fully applicable to behavioral events of limit
ed accessibility. The properties of repeatability, tem poral locus, and tem poral 
extent are characteristic of all behavioral events, regardless of how readily they 
may be observed. Nonetheless, from a tactical perspective, certain dimensional 
quantities may be preferable in the case of less accessible events because of 
the general requirem ents of ease and simplicity of making the corresponding 
public response. Selecting a tem poral dim ensional quantity, for example, may 
require timing devices and procedures that are unjustifiable if simple count
ing w ould suffice in meeting experimental needs.

O bserving and R ecording

The special problems surrounding observing and recording behavioral events 
of limited accessibility emanate from the fact that the same individual who 
is to perform observation and recording functions is the author of the behavior 
as well. The general range of tactics required for good observing and record
ing are fully relevant in this situation, but there must be special concern that 
they do not encroach on the individual’s role as subject. Because most individu
als are accustomed to fulfilling a variety of roles simultaneously, this require
ment is not insurmountable if approached knowledgeably and cautiously.

It is im perative to select subjects/observers w ho have a source and degree 
of m otivation to participate that is compatible w ith the nature of the project. 
The researcher should also take great care in arranging the many contingen
cies that are part of an experim ent to maintain this motivation. Some subjects 
may be inclined to produce the kind of data they think the experimenter wants 
to see, for example. The initial training and all subsequent interactions with 
the experim enter must therefore be carefully designed to avoid encouraging 
any kind of observer bias. Thorough efforts must be m ade to ensure that all 
consequences that follow observer behaviors are consistent with the goals of 
accurate observation and must not be differentially related to  any features of 
the data. For example, the subject should not feel uncom fortable in reporting 
that she d idn ’t feel like observing one day or that he forgot his counter.

A special consequencc of observing and recording that must be carefully 
managed is the perm anent response product of the whole procedure—the data
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themselves. From the standpoint of maintaining bias-free observation, it is 
usually necessary to restrict the subject/observer’s access to the data in any 
form. This_tactic may even extend to covering the dials on a counter so that 
inform ation the subject w ould no t otherwise have is no t available concerning 
the day’s cumulative perform ance.

Accuracy, R eliability , and B elievab ility

Having proceeded this far in an investigation of functional relations involving 
stimuli or responses of less than desirable accessibility, the inevitable ques
tion of the accuracy and reliability of measurement must be squarely faced. 
Assessing these data characteristics unavoidably requires knowledge of the true 
values of the dimensional quantities being measured so that they can be com
pared to observed values. Such true values may often be available w hen the 
source of the limitations on accessibility is primarily logistical in nature. For 
example, w hen response products resulting from the behavior of interest are 
potentially public but logistically difficult or costly to measure directly, sub
ject self-observation data may be compared to periodically obtained measures 
of the response products for a p roper assessment of accuracy and reliability. 
There may be many such instances when special, interm ittent measurement 
efforts can be used to determ ine true values for this purpose.

The limitation on accessibility to the events of interest may be complete, 
however, precluding any evaluation of accuracy and reliability. The only re
maining tactic available to the researcher is to collect supplem entary data that 
will augment the believability o f the primary data. That is, data must be gathered 
that will serve to enhance the confidence o f the researcher and others that 
the subject-collected data constitute acceptably credible representations of the 
unknow n true values. An exam ple of this approach in an actual research p ro 
gram may help illustrate the issues and procedures involved.

The focus of the research program  concerned the study tactics college stu
dents use in preparing for tests over textbook material (Johnston, O ’Neill, 
Walters, & Rasheed, 1975). One of the reasons for the paucity of empirical 
information concerning what is probably the single most im portant behavioral 
determ inant of academic perform ance is that study behaviors occur at the 
choice of the individual in a w ide variety o f physical settings at all hours of 
the day and night. Even under ideal conditions, only some of w hat is usually 
called “ studying” is publicly observable. Arranging for frequent public obser
vation w ould have required using a study hall setting and restricting availabil
ity of materials to that room. Not only was this logistically impossible, such 
an atypical condition would probably have altered the characteristics of no r
mal student study activities. M oreover, most study behaviors rem ain inacces
sible to others regardless of any arrangements for external observation.

These facts necessitated developing a technology for measuring both pub
lic and private study behaviors via observing and recording by the individual 
student. A reporting form was developed over a period of tw o years. Versions 
of it were used every academic quarter in a variety of courses w ith hundreds
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of students, w ith major and minor revisions made continually on  the basis of 
the resulting data. Throughout this lengthy process (during w hich no experi
ments using this evolving measurement technology w ere conducted), efforts 
were made to construct the Study Report Form so that it would occasion ac
curate reporting responses of both public and private study behaviors.

This effort produced many changes in the form, sometimes of a seemingly 
subtle and sometimes of a more obvious nature. This process is too lengthy 
and complex to chronicle here (see Johnston et al., 1975), especially because 
the Study Report Form was only one com ponent of the eventual technology. 
The procedures for training students to use the form and the contingencies 
designed to facilitate their proper use of it w ere of equal im portance to the 
form itself; these procedures included arranging appropriate consequences sim
ply for completing the form as well as for making errors that w ere publicly 
detectable.

During the latter part of this developm ent period, the data were used to 
augment confidence that the obtained data were valid, indirect measures of 
study behavior. This assertion was examined by collecting at least four kinds 
of data (O’Neill, Walters, Rasheed, & Johnston, 1975; Walters, O’Neill, Rasheed, 
& Johnston, 1975). First, if the form was soliciting valid reports of study be
havior, a certain class of possible errors should be seen rarely, if at all. For 
example, in their successive attempts to meet criterion on each unit, students 
should never have reported “ rereading” the text assignment as a study tactic 
until they had first reported “ reading” the material on the same or a previous 
attempt. An examination of the data from two academic quarters in one course 
showed that in 849 instances when “rereading” was reported, it never preced
ed the reported occurrence of “ reading.”

Another kind of data required by the asserted validity of the measurement 
procedure stemmed from the design of the individualized, repeated testing- 
to-mastcry style of the courses serving as a research vehicle (Johnston & Pen- 
nypacker, 1971). Given the nature of the teaching methods, it would have been 
highly unlikely that certain types of study behavior listed on the form w ould 
be reported. In these courses, such improbable study behaviors included w rit
ing multiple choice questions (all testing was with fill-in questions), rereading 
and transcribing lecture notes (there were no formal lectures and tests covered 
only text material), and using audio-visual materials (none were available to 
the student). The examination of many thousands of Study Report Forms 
showed that these behaviors were either not reported at all or in less than one- 
half of 1% of all possible instances.

A third kind of data was available in the patterns of academic perform ance 
exhibited by students. If there was a sound relation betw een test perform ance 
and study behavior and if study behavior was being properly reported, this 
correspondence should be evident in the case of unusual patterns of academic 
performance. One such pattern that was occasionally observed was term ed 
a reversal; w hen three or more quizzes were taken in the attem pt to m eet the 
90% correct criterion, sometimes the score on the second (or third) quiz was 
markedly poorer than on the previous and subsequent attempts. A number of
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FIG. 6.2. Corresponding reversal between correct performance and total study 
time for one student (adapted from Walters et al., 1975).

such patterns were examined along w ith the corresponding reports of total 
study time on each quiz attempt. Figure 6.2 shows one such comparison.

A fourth kind of data follows from manipulating academic variables that 
should exert predictable effects on the reported study data if the students’ ob
servations are valid. One experim ent that followed the developm ent of the 
measurement procedure investigated the effects of the size of each unit of 
course material. Eight successive units in one course were arranged into lengths 
of 30, 60, or 90 textbook pages. Such major variations in the curriculum should 
result in corresponding variations in the total time spent studying each unit. 
Even greater correspondence should be seen in the time reported as spent read
ing the text material for the first time in each unit (assuming nearly constant 
reading speeds across all units). This prediction was evaluated in tw o separate 
experiments with different unit size sequences and was consistently confirmed. 
The data for one individual are show n in Fig. 6.3.

It should be clear that these kinds of data did not “prove” the validity of 
the measurement technology. However, evidence that could have weakened 
confidence in the validity of the measurement system was show n to be false, 
thus increasing confidence in the asserted validity by some unspecified degree. 
Exactly how much data are required to be convincing is, of course, unknown 
and depends on many influences, such as (a) available literature on the ques
tion, (b) the investigator’s experience in the area, (c) the details of measure
m ent procedures, (d) the nature of the research question, and (e) the 
characteristics of the reported data. However, this remains as an extremely 
useful tactic for building believability in the validity of data resulting from 
procedures designed to measure events to which accessibility is limited.
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FIG. 6.3. Time spent reading the text for the first time and pages o f material 
across units for an individual student (adapted from Walters et al., 1975).

The developm ent of this measurement technology perm itted for the first 
time the experim ental investigation of, not only those variables directly in
fluencing study behavior, but also the effects of controlled variations in study 
behavior on subsequent academic performance. The investigation was able to 
replace the traditional assumptions about the role o f study behavior with 
replicable functional relations, thus opening a new area of educational research 
to experim ental analysis.

The strategies and tactics underlying this research program dem onstrated 
a level of robustness w orthy of consideration in other areas of human behavior 
that are logistically or generically inaccessible. Generally speaking, one gains 
precise experim ental control over those relevant variables that are accessible, 
and then the inaccessible phenomena reveal themselves, if only by their ef
fects. Canons of parsimony are not violated by a dem onstration that a major 
determ inant of experimental variability can be controlled, even if not directly 
observed.

Once penetrated, the barrier of limited accessibility will yield to careful ex
perim entation. Skinner (1953) reminded us that no description of behavior 
will be com plete w ithout an account of events occurring inside the skin of 
the organism. The rapidly advancing technology of bioelectronic instrum en
tation is opening new avenues of experimental access to numerous physiolog
ical state variables on which internal behavior surely depends. Our enhanced 
ability to identify, measure, and control these hitherto inaccessible independ
ent variables perm its even greater versatility in isolating the behavioral 
phenom ena that are the result of such processes. As research embodying this 
strategy becomes commonplace, the traditional inventions of mentalism will 
lose w hatever explanatory utility is now  claimed for them. In their place will 
appear functional explanations of those phenomena that, because of their limit
ed accessibility, have posed problems of interpretation that are m ore appar
ent than real.
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R E A D I N G  S E V E N

Traditions of 
Experimental Design

INTRODUCTION

The purpose of experimentation is to provide empirical comparisons w hen 
naturalistic observation alone is insufficient. By creating special conditions of 
observation (i.e., an experiment), a scientist may gain access to facts that will 
support conclusions that may not be supportable in the absence o f such con
ditions. W ithin the last century, how ever, the nuances and complexities of 
methods of experimentation have become the focus of a broad, generic sub
discipline know n as experim ental design or the design o f  experiments.

The subject m atter of this specialty has come to depend heavily on inferen
tial statistics and cuts across many areas of scientific endeavor. Especially w ith
in the social sciences, it is now accepted that by properly applying the principles 
of experimental design, anyone can force nature to provide useful inform a
tion about almost any subject. Concern about the relevance or im portance of 
the experimental question has given way to emphasis on the quality of the 
formal design through which an experimental attack on the problem  is to be 
mounted. The interdependence of experimental design and methods of statisti
cal data analysis has created a situation in which legions of experts in “research 
m ethod ,” w ith little knowledge of the relevant subject matter, regularly ad
vise both scientists and policy makers on the propriety of proposed experimen
tal agenda.

Our aim in this reading is twofold: We first take a brief historical review 
of the evolution of experimental m ethod in the natural sciences and then fo
cus more closely on the origins and practices of contem porary approaches to 
“ experimental design,” evaluating their applicability to the natural science of 
behavior.

85
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EARLY HISTORY OF NATURAL SCIENCE 
EXPERIMENTATION

Formal experim entation is usually traced to the writings of Roger Bacon 
(1210-1292) and William of Occam (d. 1347), although it is now clear that 
the Arabians of the Middle Ages performed im portant experiments sometime 
earlier. According to Dampier (1942), the Muslim physicist Ibn-al-Haitham 
(965- 1020) accom plished major feats in experimental optics using spherical 
and parabolic mirrors and even understood atmospheric refraction. The trans
lation of his w ork into Latin must surely have been a major impetus to Bacon 
and his contem porary Robert Grosseteste. Nevertheless, intellectual life in the 
western w orld was heavily dominated by scholastic theology until the 13th 
and 14th centuries, and there was little demand or tolerance for natural ex
perim entation under those circumstances.

Probably the single figure most responsible for breaking w ith theological 
tradition in the study of nature was Leonardo da Vinci (1452-1519). Unlike 
his predecessors, Leonardo approached inquiry from a purely practical per
spective, investigating and experimenting as necessary to develop solutions 
to problems in the vast range of topics that interested him —art, biology, en
gineering, military tactics, physics, physiology, and zoology. Unfortunately, 
Leonardo published very little, although he was widely know n in Renaissance 
Italy. His notebooks have only been recovered and published in the 20th cen
tury. Much of the fundamental science of the 16th and 17th centuries was an
ticipated by Leonardo, but his w ork was as unavailable to Galileo and Kepler, 
as that of Archimedes had been to him.

Throughout the 16th, 17th, 18th, and most of the 19th centuries, scientific 
experimentation consisted of reasoned demonstration assisted by precise meas
urement. An interesting illustration of such activity is the work of van Hel- 
m ont (b. 1577), w ho  according to Dampier (1942):

planted a willow in a weighted quantity of dry earth, supplied it with water only, 
and at the end of five years found that it had gained 164 pounds in weight, while 
the earth had lost only two ounces. This was a very ingenious proof that practi
cally all the new substance of the willow was made of water, indeed quite a con
vincing proof, until Ingenhousz and Priestly, more than 100 years later, showed 
that green plants absorb carbon and carbon dioxide from the air. (p. 127)

William Harvey’s dem onstration of the circulation of the blood (1628) simi
larly illuminates the type of experimental reasoning on which it depended.

Consider the grow th of a single field of inquiry from the standpoint of the 
critical advances made by experimentation. The study of electromagnetic 
phenom ena provides a convenient example, partly because such phenomena 
w ere puzzling.and given to m isinterpretation by early thinkers. Progress in 
correcting such misinformation came slowly and only by carefully reasoned 
experimental analysis. The early work of William Gilbert of Colchester 
(1540-1603) furnished elegant experimental reasoning. His w ork w ith mag
nets led him to conclude that the earth was a giant magnet whose poles did
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not quite coincide w ith the geographic poles. Gilbert also coined the term elec
tricity to describe the forces that resulted w hen various materials, especially 
amber, w ere rubbed together.

Oddly enough, the connection betw een electrical and m agnetic phenom e
na was not made until the w ork of Farraday in 1831, although it was probably 
suspected by Franklin and others. The problem  was that a controlled source 
of electricity was not available before the early 1800s. The history of ex
perimental science makes it clear that rapid progress in a field usually awaits 
discovery of methods of producing the essential phenom ena at will. Whereas 
in 1752, Benjamin Franklin was able to charge a key w ith a series o f Leyden 
jars and conduct his famous kite experim ent, w hich dem onstrated the electri
cal nature of lightning, it was an observation in 1786 by Luigi Galvani that 
paved the way for storage batteries. Galvani noticed that if the nerve and muscle 
of a frog’s leg were simultaneously touched by tw o dissimilar metals and then 
the metals brought into contact, the leg would tw itch. He thought the 
phenom enon was the result of “ animal electricity ,” but in 1800, Alessandro 
Volta (1745-1827) showed that no animal was necessary—the electrical charge 
was the result of chemical action. Volta arranged strips of zinc and copper 
separated by paper in a salt solution and was able to produce electrical energy 
from this “ pile,” as it came to be called. Farraday invented the first electric 
m otor in 1821 and, following O ersted’s 1820 observation that a w ire leading 
away from a Volta pile will produce deviations in a compass, verified the ex
istence of electromagnetic phenom ena as described.

Over 200 years of effort w ere required to move from  the discovery of mag
netism to its understanding as a basic electrical phenom enon. We could easily 
trace the history of similar scientific odysseys, such as the discovery and classifi
cation of gasses, from the efforts of the early Greeks through the w ork of van 
Helmont, Priestley (1733-1804), Cavendish (1731-1794), and Lavoisier (1743- 
1794), or the evolution of mechanics fiom Galileo through Newton and Einstein.

One fact clearly emerges through any such historical journey, regardless of 
the discipline in question. Experim entation was arranged to perm it a single 
observation at a time, usually under know n or at least controlled conditions. 
Observations were then repeated a second and a third time to ensure the repeat
ability of the first. To be sure, the results of any series of observations were 
not identical. Concern w ith m easurem ent error can be seen in the w ork of 
Leonardo and Galileo, as well as the later, more sophisticated treatm ent af
forded by Legendre. Nowhere, how ever, do we see experim ental m ethod dic
tated by a concept of chance or random  variation in the phenom ena under 
study. The origins of the m ode of experim ental inquiry that may be called 
“ groups com parisons” are altogether different.

EARLY HISTORY OF GROUPS COMPARISONS

The origins of the distinctly m odern practice of using com posite group meas
ures as a basis of experimental comparisons are complex and difficult to trace. 
In an excellent book on the history of statistics, Helen Walker (1929) cited
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88 READING 7

three major, diverse traditions coming together to create the discipline of statis
tics. To these, w e later add a fourth tradition—agricultural experim entation— 
that joins W alker’s three as the essential elements that com bine to give the 
rationale underlying scientific inference on the basis of groups comparisons. 
Let us first briefly recount the three traditions Walker identifies.

Social Enum eration

The oldest of these traditions can be traced to biblical times w hen King David 
is said to have counted his people, sheep, and so forth. Early civilizations, in
cluding those of Babylon, Greece, and Rome, apparently made periodic tabu
lations of people and property, perhaps for tax purposes. In the Middle Ages, 
Pepin the Short and Charlemagne forced the Church to account, not only for 
the land it held, but for the serfs who lived on it. In England in 1086, there 
was the Doomsday Book, which listed the names of landow ners and an in
ventory of their serfs and property.

By the early 14th century, descriptive economic statistics had appeared in 
the form of records of tariffs and customs duties in Paris markets. The prac
tice of registering marriages and deaths began at that time. Baptisms were add
ed in the 15th century, and all such registrations were the responsibility of 
the Church. In 16th- and 17th-century England, outbreaks of plague inspired 
maintaining the Bills of Mortality (a death registry), w hich was gradually re
fined to include, not only the sex of the deceased, but the occurrence of any 
baptisms.

Walker view ed these and similar events as contributing to a tradition of po 
litical enumeration, whose full realization occurs in the m odern decennial cen
sus. Actually, census taking appears to have originated in Canada in 1605, with 
the Scandinavian countries following soon thereafter. England did not initiate 
a formal census until 1801, although the practice of keeping b irth  and m ortal
ity data apparently persisted from the time of the plague. The close of the 18th 
century witnessed many political upheavals, among them  the American and 
French Revolutions. With these came elected forms of governm ent that re
quired political census taking for purposes of apportionm ent. Thus, the first 
American census was conducted in 1790, as required by the Constitution. Previ
ous apportionm ent to the Continental Congress was evidently on the basis of 
state boundaries alone. At that time, census taking had already been going on 
in Norway, Sweden, and Denmark for at least 50 years; it became a regular 
function of the Swedish governm ent in 1756.

E conom ic Q uantification

The second major tradition from which m odern statistical practice derives ac
companied the rise of the mercantile economies following the Age of Explo
ration. As the foregoing discussion indicates, this tradition was at first 
indistinguishable from that of social or political enumeration. Many of the early
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monarchs required periodic tabulations, not only of their subjects, but of their 
resources, so that decisions of military strategy could be made on the basis 
of something other than pure guesswork. We have already mentioned that eco
nomic tabulations were made in 14th-century France in terms of transactions, 
not just holdings. In the late 16th century, there appeared a docum ent enti
tled Secret o f  French Finances, w hich Walker believes may represent the first 
effort to use such data in formulating state policy.

At about this time, people began using such enum erative data for p redic
tive purposes. Walker argues that the first effort to use enumerative data to 
examine the regularity of social phenom ena was Captain John G raunt’s Ob
servations on the London Bills o f  M ortality  (1662). In 1693, the astronom er 
Hailey published An Estimate o f  the Degrees o f  M ortality o f  M ankind, D raw n  
From Curious Tables o f  the Births a n d  Funerals a t the city o f  Breslaw, With 
an  a ttem p t to ascertain the Price o f  A nnuities, which marks the first attem pt 
to base annuities upon actuarial data.

Thus the insurance business was born in the m odern, actuarial sense. We 
agree w ith Walker that it is beyond mere coincidence that astronom ers, such 
as Hailey and Legendre, as 'well as Quetelet over 100 years later, played a role, 
not only in developing statistical procedures for refining observational data 
in their laboratories, but in the inductive use of demographic measures as well. 
This leads us to the third major tradition, probability theory.

M athem atical Statistics

We have already recounted the developm ent of this discipline in some detail 
in Reading 3- For the present, we rem ind the reader that by the end of the 
18th century, the mathematics of probability had progressed from its origins 
in the letters of Pascal and Fermat around 1650 concerning gambling problems 
to the formal statements of the Normal Law of Error furnished by Laplace (1778) 
and Gauss (1809). With the advent of the formal calculus of probabilities late 
in the 18th century, the stage was set for using collections of quantitative 
characteristics of individuals w ithin groups as a basis for inductive generaliza
tions concerning social phenomena. Prior to this time, the practical significance 
of the theory of probability had not been appreciated beyond its applicability 
to games o f chance.

Much earlier, Abraham De Moivre (1667-1754) developed a close approxi
mation to the normal curve (1738) on purely mathematical grounds, reason
ing from the distribution of coefficients in the binomial expansion (a + b). 
He saw the significance of this as largely theological, supporting a concept of 
Great First Cause (Walker, 1929): “ And thus in all cases it w ill be found, that 
although Chance produces irregularities, still the Odds will be infinitely great, 
that in the process of Time, these irregularities will bear no proportion  to the 
recurrency of Order that naturally results from Original Design” (p. 17). Simi
lar thinking is evident in the work of Jacques Bernoulli (1654-1705) and other 
moral philosophers of the period.
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The developm ents in formal probability theory that occurred at the turn  
of the 19th century furnished powerful mathematical tools w ith which to p ro 
vide quantitative descriptions of various phenom ena that seem ed to obey the 
normal distribution, as well as to estimate w ith astonishing accuracy the likeli
hood of occurrence of particular instances. As we have seen, the 19th century 
witnessed vigorous developm ent of this potential in a number of areas, includ
ing the invention of m easurem ent practices that seemed to bypass the need 
for absolute units. Two early 19th-century figures, Augustus De Morgan and 
Adolphe Quctelet, are at the apex of these developments. It is useful to sketch 
briefly their contributions apart from the origins of vaganotic measurement.

A ugustus D e M organ

Augustus De Morgan (1806-1871) was among the first to grasp the enorm ous 
potential of mathematical statistics for addressing complex practical problems 
in human affairs. In 1838, he published An Essay o f  Probabilities and  on Their 
Application to Life Contingencies and Insurance Offices, in which he present
ed simplified rules for the mathematically uninitiated that w ould (as quoted 
by Walker, 1929): “ enable them  to obtain at least the results of complicated 
problems, and which will therefore, permit them  to extend their inquiries fur
ther than a few simple cases connected w ith gambling” (p. 26). Around 1838, 
De Morgan w rote a speculative article on probability theory in which he sug
gested its applicability to evaluating the truth of testimony, the correctness 
of jury decisions, and the occurrence of miracles. He even suggested com par
ing 500 trials for which a jury renders an immediate verdict to 500 in w hich 
it deliberates two or more hours to see which set of verdicts displays the smaller 
percentage of error.

This may very well be the first suggestion of an intergroup experimental 
comparison and clearly forecasts the reasoning which statistical theory would 
later serve. Its im portance at the time, how ever, lay in the promise offered 
for coping w ith established problems dom inated by the ingredient of uncer
tainty. Of course, the guilt or innocence of a defendant was and continues 
to be an uncertain matter, which must often be determined by methods of ap
proxim ation, even though the penalty might be excruciatingly exact.

A dolphe Q uetelet

It is clear that the dom inant figure of this tradition was Adolphe Quetelet. It 
was Quetelet more than anyone else w ho melded the actuarial properties of 
large collections of data w ith the mathematics of expectation furnished by the 
Normal Law of Error. Quetelet clearly saw the value of gathering detailed dem o
graphic data on an orderly and regular basis. He was quite naturally convinced 
of the connection betw een all manner of social phenom ena and the laws of 
probability by the fact that the bell-shaped distribution kept reappearing. He 
founded the London Statistical Society in 1834, and the Commission Centrale
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de Statistique in 1841, and he organized the first International Statistical Con
gress in 1853- A man of prodigious energy, Quetelet was apparently determined 
to ensure the availability of an adequate data base for further developm ent 
and application o f statistical techniques. —

We mentioned earlier that Quetelet was a wide ranging intellect. He regarded 
the new  statistical m ethod as equally applicable in all fields from  agriculture 
and anthropology to zoology, depending only on the existence of an observa
tional data base. Like his predecessors, he apparently regarded the persistence 
of the norm al curve as evidence o f some supraordinate regularity. His con
cept of the average m an  as a natural ideal is discussed in Reading 3 and came 
to have a profound effect on  anthropologists, physicians, and educators for 
the next 100 years. From our po in t of view, how ever, it was in the area of 
moral measurement that Q uetelet established the most im portant precedents.

Quetelet delivered a paper entitled “Recherches sur la Penchant au Crime 
anx Differents Ages” in 1831 in w hich he related such factors as age, sex, edu
cation, climate, and seasons to the incidence of crime. He observed (as quot
ed by Walker, 1929) that these relations were highly stable from year to year:

Thus we pass from one year to another with the sad perspective of seeing the 
same crimes reproduced in the same order and calling down the same punish
ments in the same proportions. Sad condition of humanity! We might enumerate 
in advance how many individuals will stain their hands with the blood of their 
fellows, how many will be forgers, how many will be poisoners, almost we can 
enumerate in advance the births and deaths that should occur. There is a budget 
which we pay with frightful regularity; it is that of prisons, chains, and the scaffold.
(pp. 40-41)

Aside from the charming m anner in which Quetelet states a problem that 
still persists after 150 years, it is im portant to note his use of characteristics 
obtained from successive samples of different individuals to induce a general 
process presumably characteristic o f a single individual. Walker (1929) identi
fied the fatal flaw succinctly: “ He suggested that instead of making numerous 
observations on an individual as he progressed through life, the changes from 
one age level to another might be studied by making observations on large 
numbers of people at different ages” (p. 41). This suggestion, and the enor
mous volume of Q uetelet’s applications of it, clearly establishes the precedent 
for drawing inferences concerning the nature of dynamic individual phenomena 
on the basis of statistical comparisons made betw een large groups of individu
als. The full developm ent o f an experimental m ethod based on this practice 
did not occur until the late 19th and early 20th centuries. It is to  the major 
figures o f this period that we now  turn our attention.

Francis Galton

The evolution of the statistical m ethod into a foundation for designing experi
ments was greatly assisted by the w ork of Francis Galton (1822-1911), whom 
we encounter in Reading 3- G allon’s impact on the m odern social sciences
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is probably largely due to his expansion of the new discipline into the area 
of education, no t only touching the lives of virtually every Englishman until 
the present day, but also defining a subject m atter area that remains a main
stay in psychology—m ental measurement. As we indicated earlier, Galton was 
convinced that mental abilities must obey the Normal Law of Error in much 
the same fashion as physical characteristics dem onstrated by Quetelet. Gal- 
to n ’s adoration of the norm al curve is nicely captured in the following ex
cerpt from N atura l Inheritance (1889):

I know of scarcely anything so apt to impress the imagination as the wonderful 
form of cosmic order expressed by the “Law of Frequency of Error.” The law 
would have been personified by the Greeks and deified, if they had known of 
it. It reigns'with serenity and complete self-effacement amidst the wildest confu
sion. The huger the mob and the greater the apparent anarchy, the more perfect 
is its sway. It is the supreme law of Unreason. Whenever a large sample of chaot
ic elements are taken in hand and marshalled in the order of their magnitude, 
an unsuspected and most beautiful form of regularity proves to have been latent 
all along, (p. 86)

Earlier in the volume, Galton stated:

I need hardly remind the reader that the Law of Error upon which these Normal 
Values are based, was excogitated for the use of astronomers and others who 
arc concerned with extreme accuracy of measurement, and without the slightest 
idea until the time of Quetelet that they might be applicable to human measures.
But Errors, Differences, Deviations, Divergencies, Dispersions, and Individual 
Variations, all spring from the same kind of causes. . . .  All persons conversant 
with statistics are aware that this supposition brings Variability within the grasp 
of the laws of Chance, with the result that the relative frequency of Deviations 
of different amounts admits of being calculated, when these amounts are meas
ured in terms o f any self-contained unit o f variability [italics added], (pp. 54-55)

Here is a clear statem ent from Galton concerning the utility of w hat in Read
ing 3 we call vaganotic m easurem ent—the use of units derived from variabil
ity in the phenom enon itself.

It was G alton’s fascination with variation w ithin and betw een w ide arrays 
of measures that led him to attempt something not previously undertaken, 
w hich was to  have a profound effect on the future of experim ental reasoning. 
His observation of co-relation betw een characteristics (measured in terms of 
variability) across generations led him to develop the first mathematical ex
pression of correlation. We discussed the impact of this invention on the field 
of mental measurem ent; however, one point must be emphasized. A general 
mathematical m ethod of obtaining correlations, regardless of the underlying 
dimensions of measurement, added to the arsenal of statistics a means of de
termining association , which is of great utility in experim entation. In order 
to make statements about relations that might exist betw een variables, it is first 
necessary to be able to document the existence of such relations. The mathemat
ics of correlation perm itted this to be done in the case of the masses of uncon
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trolled actuarial data that Quetelet, Galton, and others caused to be collected. 
However, it was not until the genius of Karl Pearson was directed at the 
problem that the full mathematical and theoretical generality of G alton’s in
vention was realized.

Karl P earson

Karl Pearson (1857-1936) was probably first attracted to the field of m athe
matical statistics by the w ork of Galton and its im plications for the scientific 
study of heredity. He took the problem  of correlation from  the level of the 
simple statem ent that Galton had proposed and the developm ent of the first 
correlation coefficient by Edgeworth in 1892 and subjected them to full m athe
matical developm ent. In a series of papers entitled “ Mathematical Contribu
tions to the Theory of Evolution,” Pearson introduced, not only the m athe
matics of correlation, but also the idea of mom ents o f any distribution, the 
term standard  deviation, and the general mathematics o f sampling distribu
tions. In 1898, he developed a general m ethod for determ ining the sampling 
error of any moment of a distribution. W hen it was observed that many sam
pling distributions were themselves normal, the foundation for experimental 
inference on the basis of theoretical probability distributions was solidly laid.

Ronald Fisher
f

The towering edifice that has come to be know n as m odern experimental de
sign was not constructed by Pearson, but by Ronald Fisher and his students 
and followers. Fisher was trained as a mathematician and biologist and, like 
many of his contem poraries, was fascinated by the mathematical issues un
derlying evolution and heredity. Unlike some contem poraries, however, he 
turned his attention early to a broad new domain of field research—agriculture. 
Fisher and his followers developed statistical methods for evaluating agricul-' 
tural data collected under carefully controlled growing conditions and elabo
rated the procedures whereby experiments should be conducted in order to 
permit p roper comparisons and reasoning from large sets o f data. This is the 
formal origin of the phrase “ experimental design,” and it clearly implicates 
agriculture as the fourth tradition from which modern groups comparison prac
tices emanate.

The pivotal event was the articulation of the test for the significance of 
hypotheses, a process begun w ith the publication in 1908 of W. S. Gossett’s 
classic paper, “The Probable Error of a Mean” and effectively concluded by 
the publication in 1935 of Fisher’s The Design o f  Experim ents. The great im
portance of Gossett’s w ork is touched on in Reading 3. Fie showed that the 
variance of a sampling distribution of a mean could be estimated from the data 
in the sample, and he provided a mathematical basis for accommodating the 
loss of precision that occurs in inverse relation to the size of the sample. Thus, 
from observed variability in a series of measures, it became possible to estab
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lish limits on the probable error of the estimate of the mean of the parent popu
lation and, even in the case of small samples, to calculate the likelihood that 
a particular value could be the true mean of the population from which the 
given sample was drawn.

The actual form of the sampling distribution of a sample mean varies w ith 
the size of the sample, yielding a family of such distributions that approach 
norm ality as the sample size increases. G ossett’s i-distribution provides the 
likelihood of a sample mean deviation of any magnitude for any size sample 
and thus extends the reasoning associated w ith the norm al curve. This p roce
dure was quickly extended to differences between sample means, and the well- 
know n test of the null hypothesis that the means of the parent populations 
are equivalent was then available to researchers. Fisher extended the reason
ing to groups o f means w hen he introduced the analysis of variance (Fisher, 
1925). The techniques were greatly elaborated, both practically (Cochran & 
Cox, 1950; Snedecor, 1937) and theoretically (Mann, 1949; Mood, 1950; and 
many others) over the next three decades.

In the time since Fisher’s original work, there have been both disputes and 
refinements of the basic techniques of statistical inference and hypothesis test
ing. In particular, J. Neyman and E. S. Pearson introduced the Likelihood Ra
tio Test, which is a mathematical technique for deciding which statistic will 
give the most pow erful test of a particular hypothesis (i.e., correctly allow re
jection of a false null hypothesis). From this point of departure (with which 
Fisher essentially disagreed on the grounds that it is experim entally illogical) 
have come a large number of statistical procedures, including the so-called non- 
parametric m ethods that require fewer assumptions concerning the nature of 
the hypothesized parent population.

We find the reasoning underlying all such procedures alien to both the sub
ject m atter and goals of a natural science of behavior and regard the utility 
of group comparisons as extremely limited, no matter how  elegant the m athe
matical treatm ent of data they afford. We should note, how ever, that these 
methods have enjoyed almost unchallenged acceptance in psychology, edu
cation, and other disciplines that purport to be concerned w ith behavior. The 
origins of this acceptance clearly coincide w ith the influence of Quetelet and 
Galton on the social sciences and on the apparent utility o f their methods for 
mental testing and educational classification.

More recently, the work of Fisher and his followers has been adapted to 
virtually all efforts at experimentation in these disciplines. David A. Grant was 
among the first to  use the model of the analysis of variance in 1945 as a basis 
for experim ental design and subsequent reasoning in experim ental psycholo
gy. Soon after, standard textbooks (e.g., Lindquist, 1953; McNemar, 1949) 
presented these models along with simplified computational procedures as the 
basis for controlled experim entation in psychology and education.

Today, students in these disciplines have available a w ide array of “ cook
books” that present the problems of experimental design almost exclusively 
in terms of the statistical models by which data may be analyzed, rather than 
from the perspective of arranging opportunities to make comparative obser
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vations under conditions not readily found in natural contexts. As a result, 
students learn a process of scientific inquiry that is almost totally inverted. 
Instead of using questions about natural phenom ena to guide decisions about 
experimental design, models o f design are allowed to dictate both the form 
and content of the questions asked. Not only is this antithetical to the estab
lished role of experim entation in science, but the types o f questions allowed 
by groups comparisons designs are often inappropriate or irrelevant to gain
ing an understanding of the determ inants of behavior.

EXPERIMENTAL DESIGN IN THE SCIENCE OF BEHAVIOR

The tradition of designing experim ents in accordance w ith the requirem ents 
of tests of statistical hypotheses has ossified into the methodological backbone 
of the social sciences in this century. W ith the exception of certain applica
tions in the applied life scicnces, how ever, the natural sciences have largely 
ignored these prescriptions,, much as they have ignored the parallel develop
m ent of vaganotic measurement discussed in Reading 3- In particular, those 
major contributors to a natural science of behavior w ho could have adopted 
groups comparison methods of experim entation have been conspicuous by 
their failure to do so. Pavlov (1927) reported no correlation coefficients or 
F-ratios in Conditioned Reflexes, although that research was contem porane
ous w ith Pearson’s and Gossett’s w ork, w ith w hich Pavlov was almost cer
tainly aware.

More recently, the writings of B. F. Skinner, Murray Sidman, and others have 
attempted to clarify the many reasons for their steadfast adherence to the strate
gies of natural scientific experim entation in the study of behavior. We present 
the alternatives to groups comparison designs in Part III of Strategies a n d  Tac
tics and in other readings of this volume. However, it is im portant to examine 
here the two most fundam ental reasons for our concurrence w ith the views 
of Pavlov and Skinner concerning the inappropriateness of groups compari
son design tactics in the study of behavior.

B ehavior as an Individual P h en om en on

Behavior is defined as a part of the interaction betw een organism and environ
ment. As such, its occurrence is always peculiar to individual organisms and 
it is only those peculiarities that are of scientific interest if our subject matter 
is behavior. Our extended discussion of the history of group statistical tech
niques should have made it clear that these methods w ere inspired by an en
tirely different set of problems, ranging from census enumeration to predicting 
the relative frequency of occurrence o f events in large populations. For such 
purpo.ses, these methods are beautifully suited and highly effective.

The methods of experimental design and analysis introduced by Fisher are 
equally suited to the purposes for w hich they were developed—population
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genetics, agricultural research, and industrial quality control. In these and simi
lar areas, the individual case—be it fruit fly, ear of corn, or light bulb—is of 
little concern, and descriptions of population characteristics in terms of means 
and standard deviations are more than adequate for the inferences that group 
experim entation perm its. Fisher himself carefully explained that the types of 
valid inductive inference w ere from samples to populations, no t from  sam
ples to the single case (Fisher, 1956).

To be sure, there are also valid applications of these procedures to certain 
problems in psychology and education. Large-scale educational evaluation, for 
example, is not concerned w ith w hether and why a particular procedure is 
effective w ith a particular child, only w ith its effects on a population of chil
dren taken as a w hole. The form er is a behavioral question, whereas the latter 
is an actuarial one. It should not be expected that methods appropriate for 
one class of questions would apply to the other. The popular volume by Camp
bell and Stanley (1966) is an excellent reference for workers in the area of evalu
ation research. Its applicability to the study of behavior, how ever, is another 
matter.

The problem  lies in the generality of groups comparisons to the individual 
case. Because behavior is a phenomenon that occurs only at the individual level, 
the science of behavior must have as its goal the understanding of the individual 
organism’s interaction w ith its environment. Once that is accomplished, the 
question of generalizing the results from one or a few individuals to a larger 
number can be properly addressed. However, as we detail throughout this 
volume, beginning at the group level and attempting to generalize to the in
dividual case is ultimately impossible, in spite of Quetelet’s contrary conviction.

Even if it were possible, it is surely not the best approach because error is 
introduced to whatever extent a given individual deviates from the group norm. 
As Dunlap pointed out in 1932 (Herson & Barlow, 1976), there is no such thing 
as an average rat. In making this observation, he was echoing the assessment 
of the futility of statistical procedures in the study of physiology made by 
Claude Bernard (1865/1957). Methods for studying behavior must isolate and 
identify the determ inants of the individual’s behavior and experim ental com 
parisons based on groups are inappropriate by definition. If valid generaliza
tions to the individual case could be made on the basis of group data, scientists 
concerned w ith behavior would probably have adopted the m ethods w ith en
thusiasm, particularly because they are very often experimentally econom i
cal. Unfortunately, our need for a scientific understanding of the determinants 
of human behavior has been almost totally unfilled during the last 150 years 
in research in w hich groups have served as the basis for experim ental com 
parisons.

B ehavior as a C ontinuous P henom enon

The second problem  with the use of groups comparison techniques in the ex
perimental study of behavior is a variation on the problem of representative 
sampling. Behavior is a continuous process, changing through time as a func
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tion of the influence of its determ ining variables. Mathematical methods for 
describing such processes have been developed. Q uantitative description of 
behavior, which must precede experim ental analysis as m easurem ent always 
precedes experimentation, must be sensitive to this dynamic property and must 
be essentially continuous. Furtherm ore, a crucial facet of the subject m atter 
of the science of behavior concerns the nature of this change over time, and 
that nature cannot be understood unless the phenom enon is tracked through 
time. Unfortunately, the bulk of the design models that have evolved from 
the groups comparison tradition become awkward and unmanageable in the 
face of continuous measurement, as well they should.

The validity of these models for groups comparisons partly rests on the ex
tent to which the underlying data conform to certain assumptions of independ
ence, so that the collections of discrete measures necessary for performing the 
analytical techniques must be corrected for any correlation. But collect
ing discrete measures of a continuous process necessarily presupposes a sam
pling procedure, and this requires assumptions about the representativeness 
of the sampling. In order to satisfy those assumptions, one must know  the na
ture of the universe from w hich the sampling is done, and this is precisely 
the question the science is seeking to address.

In other words, using groups comparison methods of experimentation forces 
one to second guess by assumption the very phenom enon under investigation. 
This strategic defect has evidently been overlooked by a num ber of well- 
intentioned individuals who are laboring mightily to reconcile the requirements 
of a science of individual behavior w ith the tactics of data analysis and ex
perim ental inference provided by the tradition o f groups comparison. Mean
while, others practice methods o f science that foster comparison based on 
observation, not assumption, and inference based on replication, not specu
lation.
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R E A D I N G  E I G H T

Pure Versus 
Quasi-Behavioral Research

BEHAVIOR AS A SCIENTIFIC SUBJECT MATTER 

Introduction

Among the many struggles that have constituted psychology’s attempts to study 
human activity, the conception of exactly w hat it is about human beings that 
should be the object o f our investigations has been, and continues to be, a 
mighty one. This struggle is certainly appropriate. There can be no more cen
tral and pervasive an issue in psychological research than the definition of the 
phenom enon to be addressed by experimental methods. One of the reasons 
why an unambiguous definition of the subject m atter is critical is so that the 
details of research m ethod can be properly suited to the task of preserving 
the subject matter in the processes of definition, measurem ent, design, analy
sis, and experimental inference in undiluted and uncontaminated form. Failures 
to maintain such purity depreciate to some degree (perhaps beyond any scien
tific value) the legitimacy of experimental conclusions, such “ bastardy” tak
ing the form of inferior reliability and generality of effects. These limitations 
on experimental data eventually come to characterize entire literatures, thereby 
retarding the developm ent of a human science and stunting its technological 
progeny.

Although it is by no means universally agreed upon, many in psychology 
and the social sciences describe behavior as the focus of their scientific efforts. 
Of this population, some refine their mission even further to the study of be
havior as a natural phenom enon in its own right, rather than as an epiphe- 
nomenal means of investigating putative events inside the organism. However, 
even within this hearty minority, there is often considerable discrepancy be
tween the intended subject m atter and the subject m atter that survives ex
perimental m ethods. That is, the conception of behavior that guides the 
investigator’s creation of the experiment and eventual inferences is often far

98
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- from congruent w ith the subject m atter defined by research m ethods and 
represented by the data. (Of course, nature speaks only through experimental 
procedures and w ithout regard for the intentions of the investigator). This kind 
of slippage seems to issue partly from an inadequate understanding of w hat 
the biological phenom enon of behavior is, thereby ensuring insensitivity to 
the consequences of its characteristics for the selection of m ethods for study
ing behavior.

A D efin ition  and Some M ethodologica l C onsequences

Chapter 3 in Strategies and  Tactics offers the following biologically and em
pirically functional definition o f behavior:

The behavior of an organism is that portion of the organism’s interaction with 
its environment that is characterized by detectable displacement in space through 
time of some part of the organism and results in a measurable change in at least 
one aspect of the environment, (p. 23)

Certain facets of this definition carry a major responsibility in guiding ex
perimental investigation of the subsumed subject matter. Certainly, the stipu
lation that behavior is characteristic only of individual organisms is funda
mental. Behavior is an intraorganism phenom enon, a result that can exist only 
w hen an interactive condition prevails betw een a single creature and some 
part of its environment. That environm ent may sometimes include other o r
ganisms, but it is still each individual that is behaving, no t collections of in
dividuals. In other words, there is no such phenom enon as group behavior, 
just as there is no such biological organism as a group. It is only our linguistic 
traditions and statistical machinations that create such illusions.

Although this argument could be pursued at far greater length, it should al
ready be clear that one of its m ethodological consequences is that the fun
damental features o f behavior can be clearly detected only at the level that 
they exist. A scientific effort to understand organism -environm ent interactions 
(behavior) must examine the effects of independent variables on those inter
actions. Given the uniqueness of individual organisms and their past and present 
environm ental interactions, any attem pt to abbreviate the search for empiri
cal generalities by collating the effects of the independent variable on the be
havior of different subjects can only obfuscate rather than extend the relations 
of interest.

A nother methodological implication of this definition emerges from the 
reference to “ the organism’s interaction w ith its environm ent” and to “ de
tectable displacement in space.” The first phrase denotes behavior as the in
terface between the organism and the environment, not a property  or attribute 
of the organism. Behavior is not possessed by the organism and is not some
thing that the organism does. It is the result of a relational condition  betw een 
the separate entities of organism and environm ent. The requirem ent for an 
interaction means that real or hypothetical states of the subject (being hungry 
or anxious) does not constitute behavioral events and that neither do inde-
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pendent conditions or changes in the environm ent (e.g., if you walk in the 
rain you will get w et, but getting wet is not behavior). The reference to “de
tectable displacem ent in space” removes any confusion by requiring m ove
ment, how ever gross or minute.

Furthermore, the last phrase of the definition—“ that results in a measurable 
change in some aspect of the environment”—dictates that the movement of in
terest be detected and measured by its effects on the environment. This is not an 
unreasonable requirem ent. Because behavior refers to organism -environm ent 
relations, there w ill unavoidably be relevant environm ental changes to serve 
this definitional and measurement function. It is also a useful restriction because 
it tends to insure that the phenom enon being measured is indeed behavior.

A further methodological consequence of this definition stems from the re
quirem ent of organism -environm ent interaction and the reference to this 
process taking place through time. These elements define behavior as a dy
namic, continuous, interactive process occurring through time; not as a dis
crete, static event or state. It follows that attempts to study such a phenomenon 
must strive to capture these qualities through the tactics of measurement and 
design that are selected.

In summary, behavior is first a phenom enon that exists only betw een in 
dividual organisms and their environments. Second, behavior involves some 
movem ent that is an interaction between the behavior organism and its en
vironment. Third, such movements constitute a dynamic and continuous 
process through time. Whatever else may be true about behavior, it would seem 
difficult to deny the validity of these fundamental qualities. That this defini
tion was crafted prim arily for methodological uses is clear by its requirement 
for detectable m ovem ent. This should not be taken to mean that events whose 
reality and nature are uncertain and that cannot now  be directly measured may 
not satisfy the rem ainder of the definition and otherwise qualify. Consistent 
with the tenets of radical behaviorism, it does mean that the experimental study 
of such supposed events is relatively difficult and risky and that we must ques
tion very carefully the nature of the data and our interpretations.

It may be important to remind ourselves that although we may debate the de
tails of a definition of behavior, the process itself is a real, natural, biological 
phenomenon whose existence and features will be no more affected by our con
victions than lead was turned into gold by alchemists. To the extent that our 
conception of behavior and the ways in which w e go about studying it are not 
concordant with its actual features, our experimental data and subsequent con
clusions will suffer from  insufficient reliability and inadequate generality.

PURE BEHAVIORAL RESEARCH METHODS

Introduction

Experiments embodying methodological practices that preserve the fundamen
tal qualities of this subject matter in undisturbed and uncontam inated form 
constitute pure behavioral research. What is pure is the representation of the



PURE BEHAVIORAL RESEARCH METHODS 101

complete array of fundam ental qualities of behavior in the experim ental data. 
Pure behavioral research is created by measurement, design, and inferential 
procedures that respect these qualities by doing nothing to abridge, dilute, or 
distort their manifestation in the data. Although this hardly guarantees cor
rect inferences, it at least affords them  a proper basis in fact.

The standards for pure behavioral research are as uncom prom ising as the 
behavioral nature that dictates them. As w ith the phenom enon itself, w e have 
no say in their specifications. Their violation may not doom  an experim ent 
to utter worthlessness, but it must suffer in direct proportion  to the trespass. 
Of course, the limitations exist w hether or not they are recognized, and therein 
lies nature’s contingency for the scientist. What, then, are these requirements?

Unit o f  Analysis

Although im portant strategically, the formal definition of behavior only 
describes the general phenom enon o f interest. The experim enter must select 
and define a particular piece of behavior for study, instances of which can then 
be repeatedly and accurately measured. In other words, out of this continu
ous stream of behaviors the experim enter must define the limits of a single 
class of behavioral instances that are homogeneous along certain dimensions. 
Because each unique instance of behavior is a relation betw een some part of 
the organism and some part of its environm ent, it should not be surprising 
that a class of responses must be defined in terms of the classes of surrounding 
environm ental events (stimuli) to w hich its members are functionally related.

Defining a response class with references to antecedent and consequent en
vironmental stimulus classes insures a class of responses that is homogeneous 
in the functional relations that each response has with its controlling influences 
in the environment. This functional homogeneity avoids using topographical 
similarity or idiosyncratic verbal history as a basis for defining a class that might 
then include responses having different sources of environmental influences 
and that might therefore be differently affected by the independent variable. 
Functional response class definitions thereby facilitate realizing experimental 
inferences about treatm ent effects that can be reproduced by others and that 
may hold for additional response classes as well.

D im ensional Q uantities and Units o f  M easurem ent

Another aspect of experimental method that is central to preserving the charac
teristics of behavior as a subject m atter concerns the dimensions of respond
ing that are quantified through observation and the ways in which the amounts 
of those dimensions are described. The fundamental properties of behavior 
dictate a number of those dimensional quantities. Duration, latency, and fre
quency are probably most commonly used, although there are many others, 
including those characteristic of a body in motion (velocity, acceleration, etc.). 
Selecting for measurement dimensions of responding that are real, quantifi



102 READING 8

able, and likely to show  variability of experimental interest is required if the 
data are to reflect orderly and useful relations betw een responding and ex
perimental conditions.

The proper use of dimensional quantities depends on the units of measure
m ent used to describe the amount of the dimension being measured. These 
units must be absolute or unvarying in their meaning and that meaning must 
be standard for all users. Temporal dimensions are readily quantified w ith the 
units of time (seconds, minutes, etc.) whose meanings have long been abso
lute and standard. In the case of frequency, the com pound unit, cycles/unit 
time, reflects the reference that the com pound dim ension of frequency makes 
to tw o different properties of behavior. The im portance of absolute and stand
ard units of measurem ent stems from the encouragem ent they lend to meas
uring real qualities of behavior, the facilitation of measurement accuracy that 
they provide, and the resulting clarity that is attached to the data from obser
vation through design, analysis, and interpretation. The natural sciences have 
long enjoyed these benefits.

O bserving and R ecording

The observational practices necessary to preserve the characteristics of behavior 
are probably more obvious than dimensional issues. Certainly, observation must 
be of the defined responding of a single subject. If multiple subjects are used, 
each must be observed independently and their data m aintained separately in 
recording and analytical processes. Because behavior is the interaction between 
the individual and the environment, attempting to analyze the influence of 
some independent variable on that interaction would be fatally complicated 
by mixing that result w ith the different effects from o ther subjects.

The dynamic and continuous nature of behavior must be acknowledged by 
scheduling periods of observation that are as long as possible and that occur 
as frequently as possible. Furthermore, it is even more im portant that the tar
get response class be measured continuously while observational sessions are 
in progress, not only because this is generally required by the nature of the 
subject matter, but because discontinuous measurement assures some degree 
of inaccuracy. Of course, these decisions depend on a great many factors that 
are sometimes difficult or impossible to turn to the service of experim enta
tion. Nevertheless, the reasons for the im portance of these tactics will remain 
influences in the data, w hether or not the tactics are accom modated.

Finally, the quality of the data yielded by the measurement process must 
be regularly assessed. The standard here is not validity or interobserver agree
ment, but accuracy, and the researcher’s task is not to evaluate it passively 
but to guarantee.it. Pure behavioral research requires that the data approxi
mate the true state of nature, a condition that can be determ ined and certified 
only by examining the correspondence betw een obtained and true values and 
adjusting the transducer as necessary. This process is called calibration, and 
it is required w hether the transducer is machine or human.
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v~ E xperim ental D esign

Although there are many details that must be carefully considered in arrang
ing an experimental design, there are a few elements that are m andatory if 
the characteristics of behavior as a subject matter are to be preserved. One 
of these characteristics—the dynamic nature of organism -environm ent inter
actions through time—dictates that measurem ent must be scheduled to occur 
repeatedly over some period of time under each different set o f experimental 
conditions. The purpose of these repeated observations of responding is to 
allow the complete and stable effects of each condition on the measured dimen
sions of the target response class to be clearly seen. This is called the steady 
state strategy, and it has a num ber of invaluable benefits, but clarifying the 
nature of responding under each condition is certainly the most im portant be
cause these data will be the foundation on which experim ental inferences are 
constructed.

However, a prerequisite to this benefit is that the data accumulated through 
repeated observations under each condition separately represent the responding 
of individual subjects. Any attem pt to address prem aturely the issue of inter
subject generality by creating some amalgam of the behavior of different sub
jects under the same conditions only insures that the purity of the subject matter 
will be destroyed by mixing treatm ent-induced variability w ith intersubject 
variability, an extraneous artifact that has nothing to do w ith the description 
of, and cannot ever be used to explain, the behavior o f a single organism.

Q uantification and D isplay

The data that guide experimental inferences have usually been subjected to 
various quantifying operations and displayed in accordance w ith different 
graphic formats, and these manipulations can substantially influence the relia
bility and generality of interpretations. In order for this influence to be favor
able, any treatments of the data must conform to strategies dictated by the 
nature of the phenom enon. That is, the data representing the behavior of a 
single subject must not be tainted w ith that from other subjects, and their tem
poral continuity must be respected. Although these strategies leave a useful 
variety of quantification and display options, other popular manipulations are 
relegated to only a supplementary analytical role.

Experim ental In ference

Experimental inference refers to the translation the scientist makes from the 
language of nature to the language of the culture. Nature speaks through vari
ations in behavior that are correlated w ith variations in experim ental proce
dures. As interpreters, our scientific verbal behavior functions to direct others 
not having these experiences to act successfully. The reliability and generality 
of our inferences depends on their being properly tem pered by the details of
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experimental m ethod and the characteristics of variation in the subject’s be
havior as represented by the data. However, if the data do no t properly 
represent the phenom enon that is the focus of our inferences, the reliability 
and the generality of those inferences must unavoidably suffer. In turn, the 
progress of the science will suffer.

Such progress can come only in the form of veridical descriptions of the 
relations betw een behavior and those variables that influence it, these rela
tions being repeatedly verifiable (reliability) and having some meaning or ef
fectiveness beyond the circumstances of their origin (generality). These 
characteristics will be attained only if our interpretive verbal behavior is ade
quately controlled by the details of both experimental procedure as well as 
the resulting data. This challenge can be met only if the foregoing strategies 
have been followed so that the basic characteristics of behavior have survived 
the vicissitudes of experim entation intact and untainted.

Uses and Lim itations

It should be clear that pure behavioral research methods are required whenever 
it is necessary to make inferences about behavior in its phenom enal sense. In 
other words, if the overall research goal is to identify behavioral facts that will 
eventually accumulate into well-understood behavioral laws of broad gener
ality, experimental inferences must be based on data that fully represent the 
qualities of the phenom enon and nothing else.

Another way of saying this is that these methods are required w henever 
the researcher’s immediate inferences are to the level of the individual rather 
than the population. However, the phrase “ the level of the individual” may 
need some definition. An obvious referent is to the individual subject. These 
methods are m andatory if there is to be discussion about the effects of ex
perimental procedures on each separate subject. This interpretive preference 
does not mean that the researcher has no interest in the population of individu
als from which the subject is drawn; indeed, one of the subject’s functions 
may be to represent that population. But if the researcher’s goal is to learn 
something about the subject’s behavior whose generality to other individuals 
in the population can then be experimentally pursued, pure behavioral research 
methods are obligatory. In other words, the researcher’s desire to identify be
havioral relations that hold for certain populations does not mean that the im
mediate experimental inferences should be to the population level. In fact, 
generality across individuals cannot be established or even reasonably guessed 
at on the basis of the data from a few or even a large number of subjects in 
a single study. This and the other dimensions of generality can be established 
only through many experiments that identify and explain the variables that 
influence the relation of interest.

In spite of this argument, some might still be tem pted to insist that they 
do not want to discuss the effects of the independent variable on the basic 
laws of behavior that they embody, but because adequate effectiveness and
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reliability can only be attained by establishing the exact behavioral (individu
al) effects of procedural variables. The developm ent of a procedure is not com 
pleted until it is understood why it works and w hat the variables are that 
influence its effectiveness, and these research goals are unambiguously and 
thoroughly behavioral in nature, requiring experim ental m ethods that respect 
the integrity of that subject matter.

The possible exception to this requirem ent concerns that portion  o f tech
nological research that evaluates a p rocedure’ s effectiveness and reliability 
under realistic field conditions. In some of these studies, it may be sufficient 
to merely describe the resulting behavioral effects, given that their relation 
to the procedures has long since been experimentally established. In fact, some 
of the effects of interest may be only indirectly behavioral, such as logistical 
and economic results. Although certain features of pure behavioral research 
are always advisable (standard and absolute units of measurement, for instance), 
other elements may be unnecessary or even inappropriate, especially if any 
inferences arc to the level of the population rather than the individual.

QUASI-BEHAVIORAL RESEARCH METHODS 

Introduction

Experiments whose data originated w ith observations of behavior but whose 
methods prevent the data from representing its fundamental qualities fully and 
without distortion or contamination may be termed quasi-behavioral research. 
The prefix denotes the potential problem: Such research seems to be behavioral 
although it is not by the standards of the phenom enon itself. Even though the 
data in quasi-behavioral research may indeed be based on observations of be
havior, at least one or, more commonly, many features of its m ethod have 
in some way limited the representation in the data of the fundamental quali
ties of behavior that must be present if the research is to serve successfully 
as a basis for inferences about behavior. The problem is not that the m ethodo
logical practices that create quasi-behavioral research are inherently improper; 
they can be quite appropriate in the service of many kinds of experimental 
questions. The problem lies in the risk of deception, o f assuming that p roce
dures and data allow inferences about behavior when they do not. Understand
ing those methodological practices that make research quasi-behavioral will 
diminish this risk.

Unit o f  A nalysis

Beginning an experiment w ith a good understanding of behavior’s properties 
is not sufficient to guarantee an adequate basis for eventual inferences about 
behavior. Each individual’s behavior is made up of a myriad of different and 
continuously changing classes of responses, each class being determ ined by
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the surrounding environmental events that simultaneously define its existence. 
Failing to acknowledge these natural influences when defining the unit of anal
ysis means that the designated class will actually be made up of multiple class
es, each having differing environm ental determinants and, possibly, differing 
susceptibility to the independent variable in the study. Thus, the changes ob
served in the designated class will be some mixture of the treatm ent variable’s 
effects on the various natural or functional classes. This will not be detectable 
in any obvious way in the data (although they will probably be m ore variable 
than w ould otherw ise be the case), but inferences draw n about the relation 
betw een the independent variable and the designated response class will have 
poorer reliability and generality than a properly defined response class would 
have afforded. A pow erful treatm ent variable may minimize the damage, but 
this is hardly an auspicious way to begin an experiment.

There are a great many ways to avoid proper functional response class defi
nitions. One of the m ost com m on is to define responses into a class on the 
basis of their topography or form in three-dimensional space. Sometimes 
topographical features are not substantially divergent from functional consider
ations, but often such designated classes are aggregates of functional classes 
whose responses may have different environmental determ inants.

The popularity of this kind of criteria may be because form is easier to see 
and describe than function and (perhaps as a result) because comm on language 
descriptors tend to be based on form. We often decide how  to  isolate some 
part of a subject’s behavior on the basis of our verbal history. This history is 
manifest in coding systems, which parcel pieces of behavior into large mul
ticlass categories. One such system breaks all human behavior into 29 classes, 
but the most absurd version of this practice has only two categories: positive 
or appropriate behavior and negative or inappropriate behavior. Sometimes 
interest in the popular artifact called “ group behavior” is expressed early in 
the experimental process by defining the response class in such a way that the 
behavior of different individuals must be collectively observed in order to meet 
definitional requirem ents.

All of these and the many other ways of defining response classes that ig
nore the natural classes defined by environmental relations must pay some 
penalty, w hether large or small, in the reliability and generality of any be
havioral inferences. This is because the functional response class is the unit 
of analysis, the level at w hich individual behavioral effects occur and at which 
order is most clearly seen. Definitional procedures that violate this fact make 
the data and, thus, the  research, quasi-behavioral.

D im ensional Q uantities and Units o f M easurem ent

Another means of constraining the basis for making inferences about behavior 
concerns the dimensions of behavior that are observed and the ways in w hich 
those dimensions are quantified. There is often no behavioral dimension clearly 
referred to by the m easurem ent process. The ubiquitous questionnaire in psy
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chological research is plagued w ith this problem . Even w hen there is a clear 
behavioral dimension, two like dim ensional quantities are frequently p u t in 
ratio iii order to form a relative quantity that may be expressed as a percen t
age. One difficulty w ith this practice is that the dim ensional referents cancel 
w ith division. Another is that variation in the percentages across sessions may 
be the result of changes in the num erator, the denom inator, or both, but the 
quotients hide the exact nature of behavioral variability

The justification of inferences about behavior is further weakened when 
units arc used whose definitions are vaganotic (based on variation in a set 
o f underlying observations of behavior; see Reading 3). Thus, the meaning 
o f the unit varies from application to application both  w ithin and across ex
periments. Most standardized tests involve such variable units, although the 
units (such as the IQ point) are not usually given a formal name. Of'icn the 
underlying variability is only assumed and does not actually enter Into the cal
culation of scale values or unit definition; rating scales typify this practice. 
W hatever the details, not quantifying the am ount of the observed dim ension 
o f behavior w ith units of measurement whose meaning is absolute and stand
ard insures that the representation of behavioral qualities in the data is no t 
w hat it seems.

O bserving and R ecording

The most obvious threat to a sound basis for inferences about behavior that 
emerges from observing and recording practices involves mixing observations 
of the responding of different subjects in some fashion. This may occur through 
actually observing a number of different subjects simultaneously and treating 
the data as if they were from a single subject; or, the collating may occur at 
the recording stage, w hen separate observations of different subjects are tran 
scribed into some aggregate form, such as a mean or a median. The effect in 
either case is the same—the orderly relations that might exist in the individual 
data are hidden w hen contam inated w ith intersubject variability, and the ex
perim enter and anyone else is prevented from seeing behavioral effects in pure 
form. Basing prim ary experimental inferences on grouped data from different 
subjects automatically defines the research as quasi-behavioral.

Another barrier to sound behavioral inference may come from  inadequa
cies in the am ount and distribution of periods o f observation. If observational 
periods are very brief, occur interm ittently or infrequently, or are few in num 
ber under each condition, or if observation is not continuous during each ses
sion, the data base for eventual interpretation will be insufficient, regardless 
of the propriety of other methodological decisions. These are routine sam
pling issues, but when the subject m atter is behavior w ith its dynamic and con
tinuous character, they take on prim ary significance. W ithout a complete 
representation of the ebb and flow of responding as the experim ent proceeds 
through one phase to another, the risk that inferences will not be congruent 
w ith w hat really happened becomes unacceptably high.
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E xperim ental D esign  '

One of the reasons for the repeated observations already discussed has as much 
to do w ith the determinants of the inferential behavior of the experimenter as it 
does w ith the nature of behavior as a subject matter. The steady state strategy re
ferred to earlier draws its justification in part from the effort to study individ
ual subjects intensively over time. This necessitates making experim ental com 
parisons using the data from two different conditions to which a single subject 
was sequentially exposed, rather than using the data from two different subjects, 
each exposed to only one of the conditions. In order to accomplish this within- 
subject comparison, it is im portant to be certain that the data taken as represen
tative o f the effects of each of the two conditions arc fully characteristic of 
the subject’s responding under each condition. If for w hatever reason the data 
do not fully represent the actual relations betw een experimental variables and 
behavior, inferences regarding those effects cannot be complete and accurate.

Certainly, the most comm on design practice that successfully misrepresents 
and contam inates the fundamental qualities of behavior is making inferences 
about the effects of an independent variable on behavior on the basis of data 
that represent the aggregate of its separate effects on the behavior of each of a 
number of different subjects, with any one subject having been exposed to only 
one of the two conditions being compared. This example of groups comparison 
design inferences is useful because it highlights the flaw that makes it a quasi- 
behavioral research practice—the use of grouped data across subjects but w ith
in conditions or, conversely, the absence of inference based on the data of 
individual subjects obtained under repeated exposure to both conditions.

Q uantification  and D isplay

One of the unfortunate side effects of groups comparison designs is their in
extricable relation to inferential statistics, whose rules completely determ ine 
quantification and display practices. The consequences of inferential statistics 
for experimental m ethod are sufficiently substantial and pervasive that they 
will be treated in a separate section. However, it should be clear that they re
quire the data from many different subjects be thoroughly homogenized and 
processed in a way that greatly limits access to pure behavioral data at the in
dividual level, if they even exist. The rules for quantifying operations are ex
tensive and rigid, and graphic displays tend to be preem pted, in spite of their 
ability to highlight detailed relations between tw o variables. Because of their 
dom inant influence on inferential behavior, quantifying and display practices 
alone can make research quasi-behavioral, even if all of the preceding elements 
of m ethod supply pure behavioral data.

E xperim ental In ference

As suggested by its definition, quasi-behavioral research is created by any 
m ethodological practices that result in experimental inferences that are not 
under the control of all of the fundamental qualities of the phenom enon of
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behavior. Aside from their other m ethodological consequences, the interpre
tive process required by all inferential statistical m odels guarantees this final 
limitation, an d  the following section details the reasons for this and the many 
other effects of statistical practices on the subject m atter.

In summary, then, quasi-behavioral research m ethods can be said to create 
a qualitatively different subject m atter from  that o f pu re  behavioral research. 
This subject matter is composed of both pure behavioral qualities and artifae- 
tual qualities created by elements o f research m ethod, the exact proportions 
of each varying from one study to another depending on  particular m ethodo
logical practices. However, the scientist’s mission is no t to create subject m at
ters but to understand natural phenomena. In order to accomplish this mission, 
experimental m ethods must do no m ore and no less than represent the natur
al phenom enon fully and w ithout distortion or contam ination. They must not 
create any discrepancies betw een the raw phenom enon and the experimental 
subject matter. W hen this occurs, the research may appear to be about som e
thing that it not quite is, and inferences about the phenom enon innocently 
based on a subject m atter that is slightly or substantially different must suffer 
slightly or substantially weakened reliability and generality, w hether or not 
we like it (or even know  it).

TRADITIONS AND PRACTICES 
OF INFERENTIAL STATISTICS 

H istory o f  A pplication in P sych o logy

Psychology and the social sciences have a kind of familial relationship with 
statistics; to a great extent they grew up together—like cousins. Their lineage 
actually goes back to biblical times w hen the first efforts at social enum era
tion were made, and by the 17th and 18th centuries, formal censuses w ere 
conducted with the support of simple descriptive statistics. The utility of this 
technology to the business and financial w orld was obvious, and the need for 
economic quantification spurred statistical applications. The need to make 
predictions based on economic and other data was served by developments 
in the mathematics of probability, and by the turn o f the 19th century it was 
possible to estimate w ith serviceable accuracy the likelihood of occurrence 
of particular instances.

It is not clear just w hen the notion emerged of using mathematical statistics 
and the new developments in probability theory to assist in making intergroup 
experimental comparisons. Augustus DeMorgan (1806-1871) may be able to 
lay claim to that accomplishment, but it was clearly Adolphe Quetelet 
(1796-1874) w ho became the dom inant figure in this history. This Belgian 
statistician and astronom er is w idely regarded as the founder of the social 
sciences (Woolf, 1961). He saw w ith his wide-ranging intellect the possibility 
of applying the calculus of probability to detailed dem ographic data catalog
ing all aspects of hum an affairs so as to estimate the ideals o f human qualities.
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Like others of his time, he viewed the normal law of error as evidence of some 
supraordinate regularity, and his concept of the average man as a natural ideal 
was a major influence on 19th century concepts of behavior. It was Quetelet 
w ho suggested and popularized the practice of drawing inferences about dy
namic individual phenom ena on the basis of statistical comparisons betw een 
large groups of individuals (Walker, 1929).

Francis Galton (1822-1911) greatly assisted this practice by applying it to 
the task of mental measurem ent and the field of education. His developm ent 
of the mathematical expression of correlation was an im portant advance that 
attracted the attention of Karl Pearson (1857-1936). Pearson not only devel
oped fully the mathematics of correlation but also the idea of mom ents of any 
distribution, the term  standard deviation, and the general mathematics of sam
pling distributions.

However, the m odern concepts of experimental design were constructed 
by Ronald Fisher and his students. Like Pearson, he was interested in biologi
cal issues, and he turned his attention to the new field of agricultural research. 
Out of this work came the concept of experimental design in the sense of creat
ing experimental conditions that allow statistical reasoning from large sets of 
data collected so as to perm it comparisons betw een groups.

Meanwhile, the emerging disciplines of the social sciences needed an ex
perim ental method, and the new inferential statistical practices and reasoning 
were no t only historically familiar, they brought w ith them  a needed aura of 
scientific respectability. The ensuing decades have seen the practice of designing 
experiments in accordance w ith the requirements of tests of statistical sig
nificance ossify into the methodological backbone of the social sciences. This 
tradition has grown so secure that any other experimental procedures are called 
quasi-experimental (Campbell & Stanley, 1966).

C onsequences for  th e  Study o f  B ehavior

E x p e r im e n ta l Q u estio n . The effects of this tradition never were nar
row ly limited to experim ental interpretation, and over the years they have 
pervaded all aspects of scientific method. Some of these m ethodological con-

i  sequences are rigidly dictated by the mathematical model, but they often strong
ly encourage still other practices until the invasion is complete.

These effects begin at the beginning with the experimental question. Its form 
is thoroughly subservient to theiogic of inferential statistics, which is required 
by the underlying mathematical procedures. The technique requires calculat
ing the probability of obtaining the observed difference betw een tw o sample 
group means given the assumption that there are no differences in the popula
tions. Aside from, the sham of the null hypothesis (which is a bit of logical 
sleight-of-hand necessary to give the reasoning the appearance of deductive 
validity), the real experimental question only asks, “ Is there a difference 
[between the measures of central tendency for the different groups being com
pared]?”
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This is a frustratingly crude question. It turns science into an inefficient game 
of 20 questions, in which questions must be phrased so that they can be an
sw ered only by yes or no. The chafing o f this restriction is easily seen in dis
cussion sections, where the experim enters routinely exceed their inferential 
limits by waxing poetic about the nature o f the difference—the true them e 
of interest.

However, the effects of inferential statistical traditions on question asking 
are even more serious than the formalities o f interrogatory form. They go to 
the very depths of our wonderings about behavior. They encourage a curiosi
ty about differences, about w hether “ this” makes a difference or w hether 
“ this” is different from “ tha t.” Of course, it is not that observed differences 
are uninformative, but they are inevitably easy to find. Their availability may 
be experimentally gratifying, but their accum ulation in the literature may im 
properly com fort us about our progress. For science advances by pursing 
similarities, and similarities are discovered by asking about the detailed na
ture of the relations betw een independent and dependent variables.

M ea su rem en t. The impact of inferential statistics on measurement is rela
tively indirect, though still pow erful. For example, there is nothing about in
ferential statistics that specifies the means by w hich response classes are 
defined. However, the mathematical requirement for adequate sample size has 
the indirect effect of encouraging response class definitional practices that are 
compatible w ith a large num ber of subjects. This is especially true w hen their 
performances are measured simultaneously; but even w hen they are observed 
one at a time, definitional niceties are deemphasized by observational logis
tics. As a result, the rigors of functional definitional strategies tend to be avoided 
in favor of simplicity, which usually means broad categorical labeling guided 
by cultural linguistic history and its topographical foundation.

Observational procedures become similarly subservient to large-N logistics. 
The perceived need to sample from a large num ber o f individuals in a popula
tion indirectly though strongly encourages observational procedures that sam
ple only a small portion of the occurrences in the response class’s population. 
In other words, the tendency is to observe the behavior of each subject rela
tively few times, usually only once. The obvious consequence is data that depict 
an incom plete and possibly m isrepresentative picture of the true effects o f ex
perim ental conditions. The dynamic character of behavior is lost to a static 
illusion that is comforting only if variability is viewed as an inconvenience 
useful for no more than algebraic manipulation in the service of the statistical 
model.

E x p e r im e n ta l D esign . This style of observational sampling creates part 
of experim ental design as well. In its narrow est sense, experim ental design 
refers to the arrangement of the independent variable (and, by im plication, 
the scheduling of dependent variable measurement) throughout the entire 
course of the experiment. When large-N logistics encourage relatively few meas
urements, there is further encouragem ent for relatively limited exposure of
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each subject to experim ental conditions. Of course, the num ber and duration 
of exposures to the independent variable varies greatly depending on its na
ture, but the contrast to repeated-measures designs w ith their repeated con
tacts w ith the treatm ent condition is easily drawn. Furtherm ore, whereas to 
the statistician the difference is simply a matter of the num ber of contacts, 
to the behaviorist one exposure each with many subjects is very different from 
many exposures w ith one subject. Only the later can fully illuminate the na
ture of the phenom enon.

A more subtle effect of statistical traditions on experimental design is to make
ii .1 sialic and rigidly rule-bound set of practices, whose requirem ents in any 
one application are set dow n by an underlying mathematical m odel that has 
nothing to do w ith the nature of the phenom enon and the needs of the in
dependent variable. The experim ent then becomes a som ewhat secondary 
process of f illing cells w ith empirically derived numbers; and once begun, it 
must be com pleted regardless of how  clearly the numbers suggest a better de
sign or the futility of the effort because the results cannot be clearly know n 
until the statistic is finally computed. This static perspective thus forces the 
investigator to guess the results in advance in order to predict all of their ex
perimental needs. In effect, it attempts to coerce nature to adapt to the design 
rather than the other way around.

In te r p r e ta tio n .  Not surprisingly, the consequences of inferential statis
tics for experimental interpretation are direct, clear, and encompassing. They 
begin with detailed rules for quantifying the results of observation, and the 
most unfortunate one is the common requirement for aggregating data across 
subjects into various groups. However, the quantitative digestion of the data 
by statistical formulae continues by specifying the entire quantitative basis for 
experimental comparisons, regardless of the nature of the data. Along the way, 
intersubject variability and treatment-induced variability are thoroughly 
homogenized, and any chance of describing pure behavioral effects is lost.

Although they are no t specifically precluded, any meaningful graphic tradi
tions are typically preem pted by these quantitative traditions. In fact, descrip
tions of statistical outcomes do not tend to be regularly accompanied by graphic 
displays that relate even group responding to treatm ent conditions over time, 
and the displays that are used are usually highly summarized w ith few data 
points.

The results of all of this quantification is a rigid inferential process that is 
narrowly aimed at a probability-bound decision about the existence of differ
ences betw een groups. It is not a searching and inquisitive process, looking 
anywhere in the data w here nature may have left a message. It is m ore like 
a blindered old w orkhorse following the same route each time.

The destination is equally predictable. As already discussed, the “ official” 
inferential statem ent allows only acceptance or rejection of the null hypothe
sis. In the latter case, this then allows arguments about w hy an alternative 
hypothesis (the real one) might be responsible for the obtained difference. 
However, because data analysis procedures have usually focused solely on the
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mere existence of a difference, there is little if any formal basis for discussing 
the degree of the difference or its nature. This raises the issue of the source 
of control over the inevitable inferential discussions that exceed these bounds.

Unfortunately, the legitimacy o f their statem ents further depends on the 
correctness of a number of assumptions. This requirem ent is unfortunate be
cause the assumptions are rarely viable on their face in the case of a behavioral 
subject matter. For example, these assumptions usually derive from the nor
mal law of error, which asserts that, as a result of random  determ ination, er
rors will be distributed evenly around a central value and tend to cancel. 
Furthermore, it is also often required that multiple distributions of such er
rors be roughly equivalent so that they can be pooled.

The problem  is that these assumptions are rarely m et by behavioral data. 
The effects of uncontrolled variables on behavior cannot be assumed to resem
ble independent, random occurrences because behavior is a continuous process. 
The effects of any variable (extraneous or independent) are most likely to ex
hibit serial dependence. It is simply the nature of the phenom enon that every 
mom ent of our experience may influence subsequent actions. These assump
tions are easily made and verified if ears o f corn are the subject m atter, but 
when the subject matter is behavior, the assumptions are only easily made.

Many of these and other shortcomings of inferential statistics are no longer 
novel, and a battery o f further quantitative operations are often called on for 
resuscitation or justification of the data. Such efforts suggest notions of statisti
cal control that diverge sharply from the contrary tradition of experimental 
control. Experimental control refers to actual m anipulation of real events in 
order to modulate their influence on the dependent variable. However, quan
titative operations manipulate only numbers and have no impact on w hat they 
actually represent. In other words, statistics control no m ore than the verbal 
behavior o f the investigator.

G enera lity . The great paradox of inferential statistics is that their use kills 
almost all hope of achieving one of their prim ary goals. Probably the most 
frequently articulated need motivating their use is to establish the generality 
o f the results across subjects. To understand why this is ultimately impossible 
w ith these methods, it is im portant to understand that cross-subject generali
ty (there are other “ flavors”) first depends on the existence of a reliable be
havioral relation or effect whose generality can then be queried. Knowledge 
about how  well that effect holds for different members of some population 
comes from understanding how certain variables influence it. This understand
ing can be obtained only through experim ental analysis of the relation and 
its controlling variables, and the experimental methods must accommodate 
their behavioral nature.

The statistical tradition misunderstands the task by, instead, attempting to 
make it an interpretive process. Whereas inferences from the sample to the 
population are indeed proper statistically, they are not meaningful behaviorally 
because of the nature of the phenom enon. The grouped data supporting in
ferences to the population cannot properly describe the heterogeneity of
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actual individual effects. In other words, the group “effect” w hose generality 
is being argued is not a behavioral phenom enon but a mathematical artifact. 
In fact, there are usually many different behavioral effects among the sampled 
subjects, and such variety suggests a fair amount of proper experimental spade 
w ork before enough will be know n to produce a reliable (individual) effect 
whose generality can then be pursued. Of course, that accom plishment will 
inevitably identify a number of controlling variables that influence cross-subject 
generality.

S u m m a ry .  Some have countered these limitations of inferential statistics 
by proposing nonparametric alternatives (e.g., Kazdin, 1976; Levin, Marascuilo, 
& Hubert, 1978). Although the substitution may be well intentioned, it should 
be clear that nonparam etric statistics suffer a sufficient num ber of the same 
problems to guarantee their quasi-behaviorai status. They may avoid the plague 
of intersubject variability and assumptions about the nature of the hypothe
sized parent population, but they require or encourage many practices that 
compromise pure behavioral qualities. For example, their inferential focus on 
a single significance statem ent instead of detailed descriptions of responding 
under repeated exposures to experimental phases that are themselves repeat
ed still discourages proper attention to measurement practices and the steady 
state strategy. Furtherm ore, even though they avoid intersubject variability, 
their quantification rules can easily obscure pure behavioral effects as success
fully as their large-N relatives.

For that matter, descriptive statistical procedures must be applied with care 
lest they too “befoul” behavioral data. However, when descriptive quantita
tive methods are properly used to supplement graphic displays by adding a 
degree of descriptive precision about aspects of pure behavioral relations, these 
methods can be quite valuable (see Reading 10).

In other w ords, the concerns expressed here about various statistical tradi
tions and practices should not be misconstrued as a condemnation of the quan
titative operations themselves. Statistics, inferential and descriptive, are 
perfectly valid and valuable methods for particular tasks, but methods and tasks 
must be properly matched. Given their tradition and sophistication, it is in
deed unfortunate that inferential statistics and the study of behavior are such 
a poor match.

The social scientist’s attempts to force the fit by adapting the subject m at
ter to the method has furthered naive, culturally based conceptions of behavior 
instead of loosening these bonds. Inferential statistical traditions have en
couraged the view  that behavior is an intrinsically variable and autonomously 
inspired phenom enon that is complex beyond the capabilities of science. It 
has done this, not only by obfuscating the orderliness of behavioral relations, 
but by requiring, generating, and using behavioral variability instead of explain
ing it. Variability is thus viewed as inevitable and beyond reasonable, if not 
ultimate, explanation. Not surprisingly, this perspective provides limited ex
perimental m otivation to control variables and explain their ,influence, and
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" the relative paucity of such evidence is only taken to affirm the consequence. 
It is a tragic circle.

LIMITATIONS AND USES OF QUASI-BEHAVIORAL 
RESEARCH METHODS

Where does this assessment of quasi-behavioral research m ethods leave us?- 
It should be clear that they are poorly suited to the task o f learning things about 
behavior. When our experimental questions require inferences about behavior 
(as a phenom enon, not in the general and vague cultural sense), w e must use 
methods that generate data that retain all of the qualities of behavior intact 
and undiluted so that our inferences will be successfully reliable and general. 
Quasi-behavioral research m ethods fail to  m eet this requirem ent and, there
fore, should not be used to support inferences about behavior or to the in
dividual. It has already been pointed out that this is the type of inference 
required by all basic research and most technological research, and quasi- 
behavioral research methods are thus inappropriate in these areas of investi
gation.

Lest this seem too extreme an indictm ent, it should be acknowledged that 
it is no t that quasi-behavioral research m ethods can tell us nothing at all about 
behavior. If a treatm ent effect is unusually pow erful, it may survive such 
methodological mishandling w ith useful reliability and generality. The ancients 
learned much about the w orld w ithout the niceties of scientific m ethod, but 
they w ere often wrong, and w hat little they did learn pales into insignificance 
compared to the fruits of even a few years of m odern science. At the most 
generous, quasi-behavioral research m ethods are a highly inefficient way to 
go about discovering the laws of behavioral nature, and the costs to our field 
and our culture are certainly more than w e can afford.

These constraints may be difficult to accept in those cases w here we can 
plainly see that quasi-behavioral research data originated from the subject’s 
behavior. It looks like the data represent behavior—in the vague lay sense of 
behavior, they do—but we do no t see or appreciate the gravity of their short
comings. The problem lies in the strength of our culturally based linguistic 
practices about behavior and the relative weakness of our professional vocabu
lary, w hich should be under the control o f the experimental facts about the 
phenom enon and their methodological implications. It may help to rem em
ber that the cost comes w hen we succumb to im proper inferential tem ptations 
that are then published and become literature. Then, their value to others who 
wish to act successfully based on our findings is limited (if not w orthless or 
possibly harmful), and they discover that they cannot be effective. This is the 
real meaning of poor reliability and inadequate generality. W hen entire areas 
of behavioral literature are constituted predom inantly of quasi-behavioral 
research, w e are likely to find little progress in our understanding of behavior 
in such areas and meager technological benefits to society.

If analytical behavioral research (experimental or applied) is an im proper
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use for quasi-behavioral research methods, are there any experimental func
tions that they can successfully serve? The answ er is certainly affirmative and 
does not conflict with all of the foregoing criticisms. The propriety of these 
procedures is not at issue in the abstract; they can only be evaluated in partic
ular applications. Generically speaking, we can say that the appropriate be
havioral applications are those in which the experim ental question does not 
require inferences about behavior, even though the data may be behavioral. 
There are many occasions for such questions, although they collectively con
stitute a relatively small portion  of our field’s technological research efforts.

Some of these questions may indeed require a behavioral data base but only 
to support inferences to the population level. Much evaluation research is of 
this sort. When the problem clearly calls for comparing the aggregate perform 
ances of groups of individuals and drawing conclusions about the populations 
that the sampled individuals represent, inferential statistical procedures are 
appropriate. For example, w hen the experimental question demands a com 
parison betw een the behavioral effects of tw o different procedures, a groups- 
comparison design accom panied by statistical analysis is proper.

However, this type o f question is far less often appropriate than its preva
lence in the literature might suggest. It should only follow a program of research 
in which each of the tw o procedures has been experimentally developed, ana
lyzed, and refined so that exactly how and w hy each w orks is fully under
stood. Furthermore, the tw o procedures must be exactly equivalent in their 
goals and functions, as well as in the characteristics of their target populations. 
In other words, they must be fully and meaningfully comparable, and it takes 
a fairly extensive program  of research to reach this point. Absent this com 
parability, such comparisons serve political rather than technological interests.

Other questions may require that experimental comparisons be within-group 
rather than betw een groups. Here inferential statistics might be inappropri
ate, but collating data across individuals w ould be necessary to describe and 
draw  conclusions about collective effects. Such studies are only needed w hen 
there is no interest or value in understanding the nature and mechanism of 
behavioral effects for the individual. Many technological efforts designed to 
manage the behavior of large numbers of people with procedures that are not 
designed, selected, or managed for individuals may fall into this category. For 
instance, efforts to control the use of natural resources or to manage behavior 
in public settings often takes this form (e.g., Geller, W inett, & Everett, 1982). 
In these instances, the goal is to influence the behavior of individuals but only 
as members of a large population. However, the fact that the procedure’s ef
fects occur for each individual means that these technologies must first be de
veloped w ith research conducted at the individual level. Nevertheless, the 
research program will eventually require group data, though the comparisons 
may be w ithin rather than betw een groups. x

Still other questions may examine logistical aspects of technological p roce
dures. Here, behavioral data may be used to answer financial, personnel, and 
administrative questions in which inferences need not be made about the in
dividual effects of behavior-change procedures. These types of investigations
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also come only at the later stages o f a technological research program , after 
the proper development and analysis, using pure behavioral research methods. 
In these kinds of studies, the behavior of the p rocedure’s target individuals 
is of interest only insofar as it provides aggregate data that can be used for 
calculating administrative needs or consequences. For example, such studies 
may use behavioral data from target individuals to determ ine the am ount and 
distribution of staff time that must be provided. Of course, this answer would 
only be useful if the form of the procedures being used was already know n 
to be maximally effective.

These examples of different types of questions that p roperly  call for quasi- 
behavioral research methods should suggest that they cannot be so easily treated 
as a single m ethod or even a related set of methodological procedures as the 
previous discussion may have implied. For instance, of tw o studies calling for 
grouped data, one may require betw een groups comparisons w hereas another 
may necessitate within group comparisons, thus leading to very different quan
titative and inferential procedures.

Furthermore, many of these studies may require pure behavioral m easure
ment procedures, regardless of the nature of their design or interpretation. 
Indeed, pure behavioral measurement methods are probably rarely inappropri
ate, even though they may not be required. For example, there are no inferen
tial disadvantages to proper response class definition, standard and absolute 
units of measurement, and continuous and complete observation. The only 
constraints that may preclude these procedures are logistical, and even then 
they may be avoided only, if the inferences allow it.

METHODOLOGICAL CONTINGENCIES

In addition to the phenom enon, the nature o f the experim ental question and 
the inferences necessary to answer it thus emerge as the criteria for all these 
methodological decisions. Properly read, they specify even the most detailed 
methodological features necessary for attaining experimental goals. Of course, 
the risk is that their dictates may be improperly interpreted. Investigators may 
be tem pted to presume that their experiments do not require inferences about 
behavior or to the individual when, in fact, they do.

The quality of our research m ethod (and thus our research) therefore seems 
to rest in part on how  well we understand the nature of our subject matter, 
our questions, and our inferential verbal behavior. Somewhat more behavioral- 
ly, the critical issue is how  well w e can identify the natural contingencies be
tween our experimental behavior and our subject’s behavior. Those 
contingencies are the essence of scientific m ethod. They are the means by 
which we come under control of the laws o f nature, not only as individual 
scientists but as a culture.

Recognizing the behavioral relations that constitute research methods is im
portant because it helps us realize that they are irrevocable. We learn about 
nature (behavioral or otherwise) by arranging conditions so that our behavior
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(nonverbal and verbal) is effectively controlled by some aspect of our natural 
subject matter. If our arrangements are im proper, our resulting behavior will 
not be effectively controlled by the facts of our subject matter, and other in
fluences (theory, culturally based preconceptions, extraexperim ental contin
gencies, etc.) are likely to be dominant. In other words, there is no short cut, 
no alternative way of discovering the facts and laws of nature. If the condi
tions we arrange do not exactly suit our subject matter and the particular facets 
of it that are of interest, our subsequent behavior will not be exactly under 
its control. In o ther w ords, although we may have some choice about our ex
perim ental m ethods, w e have no choice about their effects.

This assessment should suggest that our intentions and excuses have no bear
ing on w hat we learn. W hether we view a particular methodological proce
dure as troublesom e, logistically inconvenient, practically impossible, or 
unnecessary is com pletely irrelevant. We will learn w hat our m ethods allow 
us to learn and no more. If we use measurement procedures that have been 
described here as quasi-behavioral, then we will see an incom plete and dis
torted picture of the dependent variable that will limit the reliability and gener
ality of our (and everybody else’s) inferences. This will be the case w hether 
we are aware of the shortcomings of the measurement procedures or even 
w hether they w ere the best procedures that w ere possible under the circum
stances.

In conclusion, it w ould seem beneficial to approach our research in a 
thoroughly behavioral manner. Our own behavior thus becomes fully as much 
the target of analysis as that of our subjects, and the goal is to insure that our 
behavior is effectively under the control of our subject’s behavior.
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Strategic and Tactical Limits 
of Comparison Studies

For purposes of this discussion, a com parison study  is defined as an experi
m ent whose primary purpose, regardless of other methodological features, is 
to compare directly at least tw o different procedures for changing behavior 
or tw o or more com ponents of such a procedure. Although it is true that all 
types of experiments necessarily involve comparisons at a tactical level, com 
parison studies (unlike analytically oriented experiments) also have that focus 
at a strategic level. In other w ords, comparisons betw een w hole procedures 
or between components of procedures are the central reason that comparison 
studies are conducted, whereas analytical studies are generally designed to iden
tify and understand the nature of controlling variables, even though both types 
o f experiments necessarily make comparisons between responding under treat
m ent versus no-treatm ent conditions.

The typical experimental form at for com parison studies involves running 
each procedure through its paces while measuring some sort of behavioral out
come, and this comparison focus can be pursued w ith either between-group 
or within-subject designs. (In fact, the type o f experimental design used has 
little to do w ith the arguments in this reading, although between-groups de
signs do create special difficulties that are noted.) If the arrangem ent of con
ditions to be compared is sequential, the tw o procedures may sometimes use 
the same subjects. Otherwise, a different, though presumably similar, sample 
from the population of interest is usually used for each procedure. The osten
sible reason for the comparison is to see which procedure (or procedural com 
ponent) is better or more effective along some dimension for some usually very 
general set of applied circumstances, and the conclusion customarily attempts 
to announce a clear w inner.

Examples of this experim ental approach are easily found in any area of the 
literature devoted to developing and evaluating methods for changing behavior. 
For instance, Mosk and Bucher (1984) compared stimulus shaping to traditional
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prom pting procedures for teaching visual-m otor skills to retarded children; 
Barrera and Sulzer-Azaroff (1983) compared oral and total communication train
ing programs w ith echolalic autistic children; and Repp, Barton, and Brulle 
(1983) compared tw o procedures for programming differential reinforcem ent 
on other behaviors.

The comparison study has always been a popular type of experimental strate
gy, especially in the applied literature. It appears to be a relatively easy type 
of experim ent to design and conduct, it has intuitive appeal to nonprofession
als who may be interested in the results, and it is often selected w hen there 
is some need to evaluate a program ’s effectiveness. There may also be a gener
al tendency to think of experim entation in a comparison framework because 
of the history w ith  groups comparison designs and inferential statistics that 
we in the social sciences all share. The im portant m ethodological issues that 
comparison studies raise are relevant for both betw een groups and w ithin sub
ject designs, how ever.

These tests are a professional version of the popular technological “ shoot
ou t,” not unlike those conducted to compare consum er goods like toaster 
ovens, washing machines, or cars, and they have a face validity that makes 
them appealing to both  consumers and investigators. Although toaster ovens 
and behavior change m ethods are both technological products m arketed to 
certain consumer groups, however, the appropriateness of comparison studies 
in their developm ent, evaluation, and advertising is often quite different.

In fact, it is the thesis of this paper that comparison studies as discussed 
here are the bane o f the applied literature. They often lead to inappropriate 
inferences w ith poor generality, based on im proper evidence gathered in sup
port of the w rong question, thus wasting the field’s limited experimental 
resources. This is a strong indictm ent for so comm on an experimental format, 
but the problems w ith  comparison studies are fundamental. These problems 
involve the nature of the experimental question, the nature of the com pari
son, and constraints on the generality (and thus the utility) of the conclusions. 
Furtherm ore, this list assumes that all other aspects of experimental m ethod, 
such as measurem ent and experimental design, are properly treated so that 
they do no t exacerbate these problems (in other words, that such studies are 
internally valid in the terms of Campbell & Stanley, 1963). The problems that 
plague com parison studies are considered in the following sections.

FUNCTION OF THE EXPERIMENT
\

First, consider the difficulties surrounding the experimental question, the basic 
reason for doing the study. In the most fundam ental sense, the guiding ques
tion in com parison studies is often not really about behavior. Although be
havior seems to be a rather obvious focus, the question is usually about methods 
of controlling behavior. There is nothing wrong with this, of course; m ost ap
plied research is about methods or procedures, and, in soriie ultim ate sense, 
it must be. Nevertheless, there is a subtle but very significant difference in fo
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cus between applied studies that investigate behavior versus studies that in
vestigate procedures for controlling behavior, even though both are aimed at 
the same result—effective technology. (Although all experiments “use” proce
dures, an im portant strategic distinction may be m ade betw een using them to 
study behavior or using them  to study the procedures themselves.)

This poin t is explored further, but it is im portant here to appreciate that, 
among all kinds of applied studies, comparison studies are especially procedural 
in nature. They simply ask which of two procedures is m ore effective in produc
ing some kind of behavior change. There is usually little central interest in learn
ing much else about behavior, although it is always possible as a bonus if the 
experim enter cares to analyze the data in that light.

There is another sense in w hich at least some com parison studies are not 
really asking about behavior, and this has to  do w ith the routine details of ex
perimental methods (measurement, data processing, etc.). Behavior exists only 
betw een individual organisms and their environm ents, and in order to be ef
fective, experimental m ethods must respect this biological fact (see Sidman, 
I960, chapter 2). This means that if experim enters do anything that con
taminates, dilutes, or otherwise distorts measures of behavior change, there 
is likely to be some deleterious effect on the inferences that can be drawn from 
the data. Among other actions, this caveat clearly includes the variety of meas
urem ent and data-processing techniques that result in collating individual data 
into some group amalgam.

Many comparison studies (virtually all that use groups comparison designs 
and even many that use w ithin subject designs) run afoul of this prohibition 
in one way or another. Although the consequences do not necessarily hinder 
conclusions about behavior change procedures, they are quite threatening to 
inferences about behavior. In fact, based on the extent to  which experimental 
methods respect the fundamental nature of behavior, an im portant distinction 
can be made between pure versus quasi-behavioral research (Johnston & Pen- 
nypacker, 1986). A large proportion of com parison studies seem to be quasi- 
behavioral in nature (although analytical studies are hardly immune to these 
problems). That is, comparison studies look as if they are about behavior (af
ter all, their data-base originated w ith observations of behaving individuals), 
but in the required methodological sense they often are not. Thus, the label 
quasi-behavioral may be appropriate.

It may be easier to view m ost com parison studies as actuarial in nature. 
Although the formal processes may.deviate som ewhat from those of the in
surance industry, the general interest seems the same—to estimate dividends 
and risks for general categories based on statistical records alone; that is, 
w ithout attempting to understand the reasons for each event so as to allow 
prediction in a more individualized fashion. This often seems the real reason 
w hy comparison studies are conducted—to give the user an experimental ba
sis for predicting that one procedure will yield more o r better changes in be
havior than another for a typically broad class of individuals. W hen that 
experimental justification comes from studies that focus on merely measuring 
the degree or extent of effect on a sample rather than attempting to identify
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and understand the variables that make a procedure succeed or fail in each 
case, it is m ore an actuarial than a behavior analytic study.

Even this clarification of motives may sometimes be generous. Too often, 
the real agenda may be political; in other words, advocacy of a prior convic
tion about the procedures being evaluated. The researcher’s interest frequent
ly seems to be primarily aligned w ith only one of the procedures and it may 
even be equally strongly in opposition to the competing procedure. The fo
cus of the researcher’s interest is usually unmistakably clear from his or her 
prose alone, but the selection and im plementation of the com peting proce
dure often removes any doubt. Not only is the comparison procedure som e
times chosen partly to make the procedure of primary interest look good (by 
choosing a “ traditional” or a “ no-treatm ent” procedure, for example), its im
plementation may not receive the same degree of attention as does the primary 
procedure. If this is not enough, it is characteristic of advocacy style research 
that various features of experimental method (such as measurement procedures) 
are knowingly or unknowingly bent in favor of the researcher’s convictions, 
further compromising the veracity of any conclusions (see Box 3-7 in Strate
gies an d  Tactics).

NATURE OF THE COMPARISON

Although all of these problems are certainly w orthy of concern, they can in 
principle be either tolerated or rem edied in one way or another. U nfortunate
ly, the remaining problems with comparison studies are more serious and bring 
into question the general propriety of this type of experimental strategy. One 
such difficulty concerns how  the nature of the two or more conditions cho
sen for comparison often raises the knotty questions of fairness and meaning
fulness.

Because each procedure tested becomes the standard by which the o ther’s 
effects are measured, selecting the proper procedures for comparison is criti
cal. Certainly there must be a fair and meaningful basis for comparing tw o or 
more procedures. Usually the similarity of their intended function is the ra
tionale; however, even this obvious selection criterion may be misleading. 
Although two procedures may address the same general behavioral goal, a num 
ber of detailed differences between them may often make each an inappropri
ate metric for the other. These differences may include (a) the exact character
istics of the populations and settings with which each works best, (b) the target 
behaviors and their controlling influences, or (c) a variety of more administra
tive considerations such as the characteristics of the personnel conducting each 
procedure. If any of these or other critical features are not optimal for each 
procedure being compared, it inevitably places each procedure at an absolute 
disadvantage in producing its best effects, and it probably places one of the 
tw o procedures at a relative disadvantage as well (a point also made by Van 
Houten, 1987).

For example, tw o programs designed to teach young children to read might
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not be meaningfully compared because they are unknow ingly appropriate for 
children with different prerequisite skill levels. Contrasting them using the same 
population of subjects may imply that one program  is m ore effective than the 
other, whereas each may work equally well w hen properly  applied to slightly 
different subsets of the young, illiterate population. A lthough it might be ar
gued that there can always be such differences that affect the results of com 
pared procedures, studies w ith the com parison focus described here are less 
likely to  discover such critical factors than are analytical studies aimed at iden
tifying controlling variables, thus permitting erroneous conclusions to be made 
w ithout qualification. In other w ords, if anything about the task or each’s ap
plication makes one procedure m ore appropriate than the other, any com par
ison is at least misleading or, in the w orst case, entirely meaningless. For 
instance, you can compare a w ord processor to  a typew riter for the task of 
writing a paper, but it is meaningless and unfair to com pare a w ord processor 
to a calculator because they are not fully and equally appropriate for that 
purpose.

Understanding enough about tw o procedures to select them  for a compari
son study clearly requires each to have a considerable experim ental history 
with which the prospective researcher is quite familiar. These literatures should 
identify through experimental analysis at least m ost if no t all of the im portant 
variables and any of their critical param eters required for each procedure to 
produce optimal effects. Any com parison conducted before such a literature 
is available is likely to misrepresent the procedure to some degree by not be
ing able to implement the procedure in its m ost effective form. The rigors of 
this obligation may contribute to the popularity o f comparison conditions about 
which relatively little is known. These are the procedures usually labeled tradi
tiona l and no treatm ent, and they are almost inevitably a weak choice as a 
standard by which to evaluate some other procedure, how ever obvious the 
political benefits of the test.

A no-treatm ent condition is a blatantly inappropriate standard on at least 
tw o counts. First, such conditions do not represent the effects o f a condition 
of nothingness—an environmental void. W hatever the no-treatm ent subjects 
are exposed to is simply not specified, usually because the degree to which 
the competing procedure can be described is no t know n. This can hardly be 
a meaningful standard of comparison. Second, even if such a condition can be 
reasonably described, it is still a weak basis for com parison because it is likely 
to be the easiest possible criterion. All the procedure o f prim ary interest has 
to do in order to be judged effective is to produce an appropriate disturbance 
of the status quo, hardly a crowning technological achievement. If at least this 
much has not been learned about a procedure through its experimental de
velopm ent, it seems pointless to attempt to certify its utility w ith such a bogus 
contest. Furthermore, the use of no-treatm ent com parison conditions tends 
to encourage concerns about the advocacy nature of the proceedings, there 
being less than equivalent procedural interest in the no-treatm ent condition.

Using some traditional procedure as the standard of com parison runs afoul 
of the same tw o difficulties to only a slightly lesser degree. Although the



jsn
rrrn

r 
triv

u 
h

124 READING 9

status of some condition as traditional may be unimpeachable, exactly what 
constitutes that procedure is usually unclear, partly because its popularity in
sures considerable procedural variety from case to case and partly because it 
usually lacks a serious, analytical, experimental history. Procedures that have 
been around long enough and please enough users to be called traditional may 
also be less effective than most prefer, which makes them  a weak comparative 
standard and thus an easy way to demonstrate the relative effectiveness of some 
other procedure. Indeed, it is the general ineffectiveness of traditional proce
dures that often motivates the developm ent of the technologies that they are 
then called on to assess.

A good example of such tactics is in the literature on individualized methods 
of college-level instruction. A sizeable portion of that literature is devoted to 
comparisons of various more or less individualized teaching procedures (such 
as the Personalized System of Instruction) w ith the traditional lecture method, 
clearly for the purpose of demonstrating or, m ore neutrally, assessing the rela
tive effectiveness of the individualized methods. Given the evidence, conclu
sions have regularly been draw n about the superiority of individualized 
methods over the conventional lecture m ethod (e.g., Hursch, 1976; Johnson 
& Ruskin, 1977; Lloyd, 1978). However, as any experienced college teacher 
knows, there is no such teaching procedure as the lecture method. Although 
most teachers do indeed talk in front of legions of adoring students a few times 
each week, it strains the denotation of the w ord “ lecture” to apply it to all 
that goes on in these classes. More im portantly, there is even less comm onali
ty in all of the o ther features of these lecture m ethod courses, such as w ith 
critical variables like testing procedures and course contingencies. However, 
the popularity of the lecture method as a comparison condition for new teach
ing procedures is understandable because it is apparently easily beaten by other 
methods, a fact that may be contributed to by each researcher’s freedom in 
using whatever arrangement of the lecture procedure that seems to be appropri
ate in each case. Any value in this victory seems m ore political than techno
logical (Johnston, 1975).

In summary, the requirem ent that the tw o or more procedures in question 
be meaningfully and fairly comparable is not always easy to satisfy. The only 
way to address it properly leads experimentation away from comparison studies 
and in the direction of analyses of sources of control over a procedure’s ef
fects. Understanding w hat makes a procedure more or less effective requires 
a program  of experimental analysis that identifies (a) those features of the tar
get behaviors and their histories that can interact w ith procedural components 
in some way, (b) those features of the circumstances under which the proce
dure is applied that can modulate its behavioral effects, and (c) those procedural 
options and their parameters that can influence behavioral outcomes. This con
siderable requirem ent should suggest that comparison studies (and, for that 
m atter, evaluation studies) are often prem ature, at best, The proper question 
is not “ Which is better?” but “ What are the variables that each requires to 
produce optimal effects?”
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Aside from the appropriateness of the com parison, there is another major 
problem  that depreciates the value o f conclusions from com parison studies, 
and it concerns their generality or, in the terms of Campbell and Stanley (1966) 
and Cook and Campbell (1979), external validity .1 In spite o f the fact that the 
m otivation underlying comparison studies is primarily to reach a conclusion 
that one of the procedures is “ better” across the broadest of circumstances, 
the generality of most com parison studies must be evaluated as “ p oo r.” The 
reasons are especially obvious w hen traditional and no-treatm ent conditions 
are used as comparisons, but they plague most behavioral procedures that show 
up in comparison studies, even those w ith impressive research histories. -

In order for conclusions about the relative effectiveness of tw o procedures 
to have good generality to other applications of each procedure, the critical 
features of each (including procedural elements, parameters of im portant vari
ables, required characteristics of target behavior and clients, and the neces
sary degree of control over setting features) must be know n and then held 
constant across all routine applications. Because the first requirem ent is infre
quently accomplished, the second is infrequently possible. In other words, un
less the critical variables that actually make a procedure w ork  have already 
been identified and publicized in the existing literature, they cannot be properly 
and consistently managed across its many applications. These admittedly 
challenging requirements make any effort to establish one procedure as “ bet
te r” than another (or, worse yet, “ best” w ith regard to some broad range of 
circumstances), an im proper and unattainable goal in the absence of such a 
literature. Furthermore, w hether we find such requirements reasonable or at
tainable for the present state of the field has no bearing on their importance, 
which stems from the nature of behavior.

Even if one tried to implement a procedure in the same w ay across repeat
ed applications, it would be difficult to avoid accidentally changing some im
portant variables. However, in practice, each time a procedure is applied, 
numerous variations in its components and their circumstances are unknow 
ingly made, willingly accepted, and intentionally incorporated (see Barber, 
1976, chapters 3 and 7, for a discussion of this problem in research contexts). 
W hen this reality is combined with the substantial lack of an adequate ex
perimental rationale for these changes or any evidence in the literature about 
their different effects, there may be little basis for even describing all such ap
plications w ith the same label. The result is the emergence of very large, amor
phous, and overlapping categories of procedures. The use of simple procedural 
labels is clearly gratuitous and implies a uniform ity that is quite misleading.

For instance, applications labeled Personalized System o f  Instruction  col
lectively include an impressive variety of components, although each instance 
often does not even incorporate all of the five defining features specified by 
Keller (1968). This same variety maybe seen for almost all of the field’s m ost

GENERALITY

'Portions of this argument were included in Johnston (1985).
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comm on procedures, ranging from the simple (e.g!, differential reinforcem ent 
o f other behavior) to the complex (e.g., token economies). Many such labels 
have become rather crude categorical references w ith no more than the general 
conversational value of other abstractions.

Of course, there is nothing wrong with variations on a particular procedural 
them e. In fact, variations that have been examined by analytical research p ro 
grams and that allow the practitioner to adjust a procedure to accommodate 
unique circumstances in the field w ithout damaging its effectiveness are ex
tremely valuable. For instance, an analytical program  of research concerning 
rum ination in retarded individuals shows that feeding satiation quantities of 
food at meals will greatly decrease ruminating (although it is clear that this 
is an inappropriate technique w hen the resident is at or above his or her no r
mal body weight). However, this research also shows how  satiation feeding 
can be modified or dropped entirely while achieving the same effect by incor
porating a number of procedural variations (Rast & Johnston, 1988; Rast, John
ston, Allen, & Drum, 1985; Rast, Johnston, & Drum, 1984; Rast, Johnston, 
Drum, & Conrin, 1981).

Unfortunately, the lack of such experimental analyses for most procedural 
applications and their labels means that there is insufficient evidence that each 
application is effective by virtue of specified critical features. The procedural 
variety instead suggests that any effectiveness is due to unique combinations 
o f at least partly unknow n influences that probably go beyond those uniform 
ly recognized as defining the procedural label.

Poor generality o f comparison studies is likely, then, for tw o reasons: (a) 
Each of the procedures being compared may be a naively unique arrangement 
o f variables, and (b) Every subsequent application may also be unique w ith 
regard to its own arrangement of functional variables. Generality of m ethod 
accrues not to labels, but only to the particular combination of variable« that 
makes each procedure effective and that will guarantee its repeated effective
ness as often as those elements are brought together. To the extent that those 
elem ents are unknow n or only suspected, each application risks violating the 
conditions that define the version used in the comparison study, thus constrain
ing the correctness of the prediction suggested by the comparison study. Gener
ality of method is effectively gained only by discovering and understanding 
the role of critical variables whose status in particular applications, can then 
be used to predict the effects of the version of the procedure being planned 
(see Strategies and  Tactics, chapter 13).

In the terms of Cook and Campbell (1979), the differences betw een the fea
tures of the procedures being compared and the different versions of them 
subsequently used in other studies or in clinical settings are the source of threats 
to the external validity of such studies (although the extensions by Judd & Ken
ny, 1981, of the concept of construct validity originated by Cronbach & Meehl, 
1955, should also be noted). However, the present points about generality differ 
from the usual discussions of external validity (see, for instance, Kazdin, 1982).

The argument here is that there may be no way to sufficiently specify sub
ject, setting, and procedural characteristics to insure reliable generality of
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comparison study conclusions because the critical variables responsible for the 
effects of each procedure are unlikely to be thoroughly identified in this style 
of research (in part, because it is not designed to do so). In such cases, this 
knowledge is therefore not available to guide or limit either statements of gener
ality or efforts to engineer generality by carefully arranging those features of 
any application of a study’s findings.

LIMITED ROLE OF COMPARISON STUDIES

The indictm ent has thus far characterized com parison studies as generally be
ing not fundamentally behavioral, not meaningfully comparative, not fairly 
conducted, not productively evaluative, not very general in their findings, and 
not very high on the list of research priorities. Perhaps the only rem aining 
question is, “ Is there any hope for them?”

The answer is a qualified “ yes,” but first it is im portant to  distinguish com 
parison from evaluation. If there is a need to evaluate or assess the effects of 
a procedure, this need in no way requires or encourages com parison w ith 
another procedure. Evaluation only asks about the effects of a procedure un
der certain field conditions, and simple description is all that is called for. 
W hether a program works can be measured against standards specified by care
fully defined goals that the target behavior, setting, and cultural context sup
ply. This is the only comparison that is meaningful if the purpose of the effort 
is simply to evaluate the applied effectiveness of a newly developed or differ
ently applied procedure.

What, then, is left for com parison studies to do? To compare, obviously, 
but only after acknowledging that such studies are not really for asking about 
behavior or evaluation. Instead, they are prim arily appropriate for answering 
questions about the relative effects of tw o or m ore procedures for a particular 
combination of target behavior, client, and setting variables for relatively nar
row  or parochial purposes. Furthermore, although comparison studies can cer
tainly be conducted for only one or a very small number of subjects, more 
often they are justified by the need to make a procedural selection for a larger 
population, such as all children in a school system. However, the m otivating 
interests should be more practical or even logistical than generic; concern 
should focus on which of tw o alternatives is the more applicable and effec
tive choice rather than which is the best in some overall or general sense.

As argued, answering the question about w hich of some group of p roce
dures is generally superlative is often impossible because it is frequently not 
really a meaningful question. In addition, there may be fully as much interest 
in the requirem ents of the procedures from an administrative perspective as 
in their relative behavioral effectiveness (see Hopkins, 1987). For instance, 
Procedure A may be som ewhat more effective, whereas Procedure B may re
quire fewer personnel, or less skilled personnel, or less money, or easier 
scheduling, or any of a number o f other practical considerations. Such m at
ters are often no less im portant than the procedures’ behavioral effects be
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cause the best choice in terms o f behavioral effectiveness may be less effective 
than its com petitor if its administrative requirements cannot be met when it 
is routinely applied.

Because of this parochial focus that eschews interest in conclusions with 
general applicability, comparison studies as approached here are unlikely to 
be conducted for the purpose of being published as statem ents of the generali
ty of a procedure, and the availability of such data is not likely to encourage 
a post hoc decision to w rite a paper that could offer only conclusions of in
tentionally narrow  and local import. This may be why most of the literature 
that makes comparisons generally docs so in the traditional style critiqued in 
this paper. As a result, actual examples of the alternative style proposed here 
arc not readily available in the archival literature.

Fully as im portant as understanding the proper role of comparison studies 
is understanding their priority  or place in a procedure’s experimental history. 
They should be the  very last type of investigation that a procedure encoun
ters. They are appropriate only after the proper course of experimental de
velopment, analysis, refinement, and evaluation has been completed, and this 
means an experimental history that is more thematic and analytically sophisti
cated than is custom ary in today’s applied literature. Meeting this challenge 
requires a rather lengthy and integrated series of experiments that analyze be
havior m ore than procedures by focusing on identifying the variables that do 
or can control behavior and examining the ways in w hich those variables can 
most effectively be arranged in practical form. With such a history, the con
straints of com parison studies are not disappointing because all o f the other 
questions concerning the identification of critical procedural, subject, and set
ting variables, the administrative requirements, and the nature of behavioral 
effects have already been answered.

With this kind o f experimental lineage, the question of which of tw o proce
dures is better for a particular type of behavioral problem  under a particular 
set of circumstances simply should not come up very often. The reason is that, 
when enough is know n about the critical variables required for each proce
dure’s maximally effective application, it will usually be clear that one proce
dure is more appropriate than another for the particular combination of features 
that characterize the behavioral problem and its attendant circumstances. When 
this is the case, there is no meaningful and fair comparison that can or will 
need to be made.

Unfortunately, such a literature is not typically available in any of the many 
areas in which we are now  called upon to provide behavior change services, 
and the final defense of comparison studies is that they are at least needed 
to guide program m atic decision-making, how  ever crudely, until this more 
sophisticated database is available. It is true, of course, that even w ith their 
limitations, comparison studies are better than no studies at all. However, this 
argument runs into another serious problem in the applied field—the terribly 
small p roportion  o f its participants who are interested in conducting or em
ployed to conduct any kind of research at all. Although no figures are availa
ble, it w ould seem that only a precious few of those earning graduate degrees
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from behavior analysis programs are prim arily interested in research careers, 
and only some fraction of them are interested in an experim ental focus on 
applied problems. Of these, only a small m inority w ind up being employed 
under circumstances in which research is even possible or encouraged, and 
only some of these circumstances are conducive to conducting sound be
havioral research, w hatever its style. To propose devoting any portion  of this 
tragically small pool of scientific resources to continuing an experimental tra
dition characterized more by its limitations than by its strengths seems short
sighted, especially when the experim ental alterative is so rich w ith immediate 
potential for improving our technological abilities.
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Measurement Scales 
and the Description of 
Behavioral Variability

THE NATURE OF BEHAVIORAL VARIABILITY

As do other natural scientists, behavior analysts assume that, given sufficient
ly precise and complete measurement, it can be show n that no two events in 
its subject! matter are ever exactly alike. Identifying and explaining such differ
ences and searching for the similarities that will constitute general laws is the 
goal of science. This responsibility is discharged through an enorm ous variety 
of techniques that have evolved across scientific disciplines by adherence to 
the tw in criteria of orderliness and generality of data. W hatever the methods, 
the goal is always to account for variability in one observed phenom enon in 
terms of other observed phenom ena.

Chapter 8 in Strategies a n d  Tactics discussed the nature of behavioral varia
bility, its sources in the environm ent and the organism, and the supcrordinate 
methodological strategy of bringing the experim enter’s verbal behavior un
der control of those aspects o f variability in the data that will augment the 
opportunity for effective interpretations. Given these arguments, the challenge 
becomes one of capturing and preserving those aspects o f variability through 
measurement and analytical procedures in such a way as to facilitate this stra
tegic goal. An im portant step in this process is therefore to understand the 
consequences of various measurement and analytical tactics. Some of the most 
pervasive of these concerns are the mathematical rules that relate the nature 
of the events being studied to the measurem ent techniques used. This is the 
topic of m easurem ent scales.

CLASSIFICATION OF MEASUREMENT SCALES

Classification systems in measurement provide coherent m ethods of categoriz
ing groups of phenomena and generally determine the kinds of descriptive state
ments that may be made. There are two dominant systems for classifying scales
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for measuring behavioral phenomena. Campbell (1920) proposed a system that 
relics on measurem ent procedures, and Stevens (1946) argued that classifica
tion should be done on the basis of mathematical properties of measurement 
scales. Both approaches have their advantages. Campbell’s system indicates 
the extent to w hich scale choice depends on empirical facts, theories about 
the quantities measured, or measurement conventions. Steven’s system, on the 
other hand, may be more useful to the practicing scientist because it provides 
a method o f assessing the appropriateness of different descriptive practices 
for use on particular scales (Ellis, 1966). This section discusses Steven’s clas
sification system in order to provide a framework for assessing the appropri
ateness of various m ethods of representing variability in behavioral data.

The fundam ental assumption of Steven’s classification scheme is that scales 
of measurement should be classified on the basis of their “ mathematical group 
structure.’’ This is determined by establishing what types of mathematical oper
ations result in an invariant scale form. For example, if measurements of 
response rate are made in terms of count per second as a unit of measurement, 
this scale may be changed to count per minute by multiplying each value by 
a constant. This transform ation results in a different scale, related to the origi
nal one by the transform ation function y  = m x, where m  is the constant of 
m ultiplication. Although the new scale has different values, the form and pur
poses of the original one are preserved under the transformation. Thus, the 
scale has a mathematical group structure that may be defined by invariance 
under transform ations of multiplication by a constant.

W hen an investigator measures a natural phenom enon, he or she assigns 
numbers to objects or events on the basis of mathematical rules that take into 
account the nature of the phenom enon. These rules then limit the kinds of 
statements that the investigator may make. In other words, the nature of the 
phenom enon determines the measurement scales that are permissible. In ad
dition, the nature of the obtained data further limits acceptable scale options 
for display and quantitative procedures. The investigator may select among 
these to suit particular interests.

The basic empirical operations that any particular set of data allow are closely 
related to the m athematical group structure of the scale. W hat the investiga
to r needs to know  in order to select the correct scale for a set of data in a 
particular experimental context is (a) the nature of the phenomenon to be meas
ured, (b) the nature of the obtained data, (c) the kinds of statements that might 
be made about variability, and (d) the types of quantitative transformations 
that are valid. W ithin this framework, the five kinds of scales that are com
monly distinguished are listed in Table 10.1.

N om inal scales are required when measurement only labels objects or events 
in any m anner that distinguishes between them. Any phenom enon that can 
be quantified thus perm its this scale. For example, an investigator who meas
ures presses on one lever as Response Class A and those on another lever as 
Response Class B is conducting measurement on a nominal scale. In this case, 
it is the labeling itself that constitutes measurement, and there w ould be no 
interest in counting or otherwise quantifying such responses. The only empir-
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TABLE 10.1
Measurement Scales, Measures o f Variability, and 
Examples of Phenomena Measured on F.ach Scale

Scale Measure o f  Variability Phenomena

Nominal Information Labeling response classes or stimuli 
Numbering subjects

Ordinal Percentiles IQ test raw scores 
Street numbers 
Ordering racers

Linear Standard deviation 
Average deviation 
Absolute mean deviation (AMD)

IQ standard scores 
Temperature (C or F)

Logarithmic Absolute mean ratio (AMR) Changes in response frequency

Ratio Any of the above 
Percent variation

Length, Weight, Time Intervals, 
Count, Frequency

\
ical operation that nominal data allow is the determination of qualitative equiva
lence, and the types of statements that may be made about variability are only 
ones of class inclusion or exclusion. The structure and purpose of nominal 
scales are invariant under any perm utation transform ation because equality 
is uninfluenced.

Ordinal scales are perm itted when measurement distinguishes between ob
jects or events and indicates order. Measurement on ordinal scales is often con
ducted w hen the data of interest involve unspecified changes in magnitude 
or level of a dimensional quantity. For example, rank ordering participants 
in a bicycle race as they cross the finish line (w ithout measuring their elapsed 
time) constitutes ordinal measurement. In other words, if the degree to w hich 
data values differ is unim portant, an ordinal scale may suffice.

Thus, w ith ordinal data, the experim enter may either speak of the assigned 
values that distinguish objects or events (a nominal statem ent) or of the order 
of those objects or events (an ordinal statement). However, ordinal measures 
provide no information about the extent of the differences. Ordinal scales may 
be transformed w ithout any loss of structure or purpose by any mathematical 
function that preserves order (i.e., any m onotonic increasing function). There
fore, adding a constant to shift the origin or multiplying by a constant to change 
units of measurement will not alter the scale.

For obvious reasons, nominal and ordinal scales are fairly crude levels of 
description and do not perm it the full potential of scientific measurement. It 
is usually possible to assign nonarbitrary values to objects or events, which 
permits one or more of the following scales to be used.

Linear in terval scales support descriptions of phenom ena that allow the 
determ ination of equality, order, and the equality of intervals between data 
values. Measures such as tem perature, IQ, and calendar time are examples of 
data that may be described on linear interval scales. The advantage of these 
scales over nominal and ordinal scales is that such descriptions may reference
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the equality or inequality of intervals betw een values, although the data may 
still be used to support nominal or ordinal statem ents as well.

Aside from nominal or ordinal statements, the kinds of meaningful state
ments that one may make with linear interval data are also narrowly defined. 
For instance, one may say that the difference betw een the November 30 and 
November 15 is 15 days, but it is meaningless to say that November 30 
represents tw ice as much calendar time as November 15- Similarly, it is cor
rect to report that John’s IQ of 150 is 50 points higher than Mike’s score of 
100, but it is not acceptable to say that John’s intelligence is 1.5 times higher 
than Mike’s. In other words, statements of comparison may be made only in 
terms of intervals betw een values, not ratios among values.

The only type of transformation that leaves the structure and purpose of 
interval scales intact is a linear one (i.e., x ' = a x  + b). An example of one 
such transform ation is the conversion from the Centigrade to the Fahrenheit 
scale by the equation F = 1 .8C + 32. The arbitrary origin of an interval scale 
may be changed by a linear function where a  = 1. Also, a change in unit of 
measurement may be accomplished by a linear function where b -  0.

Logarithm ic in terval scales are permissible w hen the phenom enon meas
ured allows the determination of equality, order, and equality of ratios among 
values. Logarithmic interval scales represent equal ratios by equal differences 
on the scale. For example, an increase in response frequency from 4 cycles 
per minute to 12 cycles per minute is proportionally equivalent to an increase 
from 40 cycles per minute to 120 cycles per minute. This is because the differ
ence between tw o values on a logarithmic scale is equivalent to a ratio of the 
two values. In the present case, ln( 12) -  ln(4) = ln( 12/4) = ln (3) is equiva
lent to ln( 120) -  ln(40) = /«(120/40) = ln(3). Thus, a logarithmic interval 
scale represents equal ratios as equal differences, as these data show in the 
top graph in Fig. 10.1.

However, logarithmic interval scales do not provide any means of assess
ing absolute differences between values in terms of subtraction (a linear inter
val statement). This is because logarithmic interval scales are based on ratios 
among values. For example, a decrease in response rate from 30 cycles per 
minute to 5 cycles per minute is not the same proportional change as is 
represented by a decrease from 100 cycles per minute to 75 cycles per minute. 
In the first case, the amount of change is 83% , whereas in the second case, 
it is only 25%, and the bottom  graph in Fig. 10.1 appropriately represents this 
difference. Thus, on a logarithmic interval scale, it is not meaningful to make 
statements regarding absolute change because the meaning of absolute change 
is relative to the level at which it occurs.

The structure and purpose of logarithmic interval scales are invariant un
der transformations of the form y  = kx. The origin of a logarithmic interval 
scale is arbitrary because there is no absolute zero point. Therefore, m ultiply
ing or dividing by a constant to shift the origin is permissible.

Ratio scales perm it the operations allowable with all of the other scales (see 
Table 10.2). Stevens (1959) argued that ratio scales are possible only w hen the 
phenom enon measured allows the determination of equality, order, equal
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FIG. 10.1. Logarithmic interval scales representing equal proportional change 
(top graph) and equal absolute change (bottom graph).

TABLE 10.2
Hierarchy o f Measurement Scales and Permissible Operations

Scale Permissible Operation

Nominal Equality or inequality

Ordinal Equality or inequality 
Greater or less than

Linear Equality or inequality
Greater or less than
Equality or inequality of differences

Logarithmic Equality or inequality 
Greater or less than 
Equality or inequality of ratios

Ratio Equality or inequality 
Greater or less than
Equality or inequality o f differences or ratios

13 7
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differences betw een values, and equal ratios among values. Ratio scales allow 
the calculation of fractions, multiples, and ratios of data values, as well as differ
ences. For this reason, ratio scales are generally considered to be the most useful 
in science.

Most physical quantities such as length, weight, and num erosity are exam
ples of dimensional quantities that may be measured w ith ratio scales. Similar
ly, behavioral quantities such as latency, duration, IRT, rate, and count may 
also be measured w ith ratio scales because it is meaningful both to form ratios 
of their quantities and to determine differences betw een values. That is, ratio 
scales allow the advantage of comparative descriptions in terms of ratios, such 
as “ one-third as m uch” or “ four times as slow .” Furthermore, one may report 
that a subject com pleted ten more problems than another subject, or that a 
subject showed a reduction of five responses compared to a previous session.

Thus, a linear interval scale permits one to report only that Subject A 
responded at a rate of .75 responses per minute and Subject B responded at 
a rate of 1.5 responses per minute, whereas a logarithmic interval scale allows 
the description tha t Subject B responded at twice the rate of Subject A. A ratio 
scale permits both types of statements. Statements about variability may refer
ence proportional change or absolute change. It is therefore meaningful to speak 
of logarithmic interval and linear interval properties of ratio data.

The only type o f transform ation that results in an invariant ratio scale form 
is multiplication by a constant (i.e. y  -  mx). Because ratio scales imply an ab
solute zero, the origin is nonarbitrary and may not be shifted by adding or 
subtracting a constant. However, units of measurement may be changed by 
multiplying a constant.

Recall that measurem ent is simply the assignment of numbers on the basis 
of observation and mathematical rules. Measurement scales are rules that serve 
to bring the experim enter’s behavior under control of certain aspects of the 
phenom enon, as lim ited by particular measurement procedures. The question 
now is how our interest in specific features of behavior and our pursuit of them 
w ith specific measurem ent procedures come together to  provide these meas
urem ent scale rules. In other words, how will the nature of behavioral data 
be influenced by m easurem ent scale decisions?

SCALES AND THE NATURE OF BEHAVIORAL DATA

Behavioral data are ratio data. The physical properties characteristic of behavior 
can vary in all of the ways specified by ratio scales and all subordinate scale 
forms, as shown in Table 10.2. For example, latency measures may vary in 
terms of linear or logarithmic intervals or even order of occurrence. Because 
the general nature of behavior is such that dimensional quantities may vary 
in ways described by any scale, it is im portant to design measurement p roce
dures so as to capture any potential form of behavior change.

Ratio scales are generally considered more desirable than others because 
they provide valuable advantages. An investigator who measures behavior on
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ratio scales creates the opportunity  to examine features of the data that are 
not available when other, more restrictive, scales are used. Conversely, an in
vestigator who measures behavior w ith procedures that limit the scale to either 
a linear or a logarithmic interval form will be unable to detect those aspects 
of variability that would be evident if m easurem ent was conducted on a ratio 
scale. For instance, using a m anipulandum that allows force o f responding to 
be measured only on a linear interval scale prevents detection of exponential 
change.

Although all levels of measurement scales are available whenever real dimen
sional quantities of behavior are observed and recorded, w hen observation 
procedures limit the record of responding to a particular scale, only that scale 
or subordinate scales are permissible. For example, if observers assign ordered 
values to subjective judgments (as in rating scales), only ordinal or nominal 
scale operations may be used. However, even w hen objective counts are made, 
a narrow  interest in order of occurrence may limit measurem ent to ordinal 
scales (as in typical stimulus equivalence procedures). In both cases, variabili
ty that would be revealed by other m easurem ent scales will not be detected.

It is im portant to appreciate the different points at w hich the investigator 
must understand the role of measurement scales in behavioral experim enta
tion. As Fig. 10.2 outlines, the fundam ental nature of behavior circumscribes 
all subsequent scale considerations. Representations of variability in the ob
tained data are then limited by the measurem ent scale selected by the ex
perim enter.

FIG. 10.2. Graphic representation of the relation between behavior, measure
ment and analytical scale decisions, and permissible statements.
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The nature of obtained variability in the data also provides the choices for 
the experim enter’s selection of scales used for analytical purposes. Because 
the experimenter must explicitly choose or construct graphic scales, we tend 
to be at least generally aware of this decision. However, the scale implications 
of quantitative procedures are usually only implicit, thus camouflaging the im
portance of scales to this choice. The kinds of statem ents perm itted may fol
low dircctly from the raw data or be influenced by the scale restrictions on 
the analytical procedures.

We began this reading by considering how variability in data may be deter
mined by both the nature of response class observed and by measurement scale 
decisions. The rem ainder of the reading extends these issues to a focus on ana
lytical tactics that may be used to augment the control that the data exerts over 
the experim enter’s verbal behavior. Although we m ention a number of specif
ic graphic and quantitative techniques, the following discussion is primarily 
intended to emphasize a general approach to analyzing variability.

GRAPHIC DISPLAY 

Linear and Logarithm ic Interval Scales

The term variability  is a fully inclusive reference to all aspects of a set of data. 
We are usually interested in particular features of variability in a set of be
havioral data, but it is wise to  be cautious about having strong prejudices about 
what aspects of variability will be extant or most im portant in a data set. Be
havior analysts tend to show interest in changes in level of responding, over
all range, local range or bounce, trend, and variation around some measure 
of central tendency, although changes in level and range tend to dominate 
researchers’ attention. Although one of these indices of variability may indeed 
be relevant to the effects of the independent variable, unexamined convictions 
that a particular feature will be im portant (e.g., average level of responding) 
may lead investigators to ignore other aspects (e.g., trend  or dispersion) that 
require different techniques of analysis to discover. An im portant strategy of 
graphic display, then, is to determine the types of displays that will reveal any  
features of variability that might be valuable.

A graph is a transform ation of sets of dimensional quantities (x , y, z, . . .) 
describing an observation into another metric (dx, dy, dz, . . .), w here d  is 
a linear distance. The issue is. whether the set of relations among data points 
(.Xjjy,), (x 2y 2), . . . remain invariant under this transformation. Decisions about 
graphic display o f variability require distinctions betw een the scales used as 
a basis for measurem ent and the scales used for displaying data. In graphic 
analysis, all of the issues concerning scales of measurement and the nature of 
variability in the data often reduce to the treatm ent of the vertical axis. The 
earlier discussion of the effects of various transformations on measurement 
scale values provides one way to determine the appropriateness of different 
graphic displays. For instance, it is appropriate to attach linear (equal) interval
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display scales to vertical axes for displaying data quantified w ith linear in ter
val measurement scales because both  scales are invariant under transform a
tions that jresult in an invariant scale form.

In other words, the variability that is captured by linear interval m easure
m ent scales will bring the view er’s verbal behavior under better control of rele
vant features of the data if they are displayed on linear (equal) interval vertical 
axes. An analogous point may be made for logarithmic interval m easurem ent 
and display scales. If measurem ent employs a ratio scale, the investigator has 
the luxury of fitting the display scale to the nature o f the data’s variability.

To illustrate this tactic, Fig. 10.3 shows two hypothetical ratio data sets p lo t
ted on a linear interval scale vertical axis in the upper panel and a logarithmic
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C O N S EC U T IVE  DAYS

FIG. 10.3- Effects on linear interval and logarithmic interval displays when Set 
A is transformed to Set B by division by a constant o f 10.
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interval scale vertical axis in the lower panel. Set A has been transformed to 
Set B by dividing each value by 10. The linear interval representation suggests 
that Set B is more variable than Set A, whereas the logarithmic interval represen
tation indicates identical variability. This clearly depicts the graphic effects 
of the transformation invariant nature of a logarithmic interval scale axis when 
data are multiplied by a constant by comparing them  to the cffects of such 
multiplication on the data displayed on an linear interval scale axis. The figure 
also shows the dram atic differences in the graphic appcarancc of ratio data 
plotted on the tw o scales.

Figure 10.4 shows tw o more data sets plotted on linear interval and logarith
mic interval axes. In this case, Set A has been transform ed to Set B by adding 
a constant of 50 to each value. As can be seen from the graphs, the addition

TR IALS

TR IALS

FIG. 10.4. Effects on linear interval and logarithmic interval displays when Set 
A is transformed to Set B by addition of a constant o f 50.
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FIG. 10.5. Linear data plotted on linear and logarithmic interval scales in the 
left column and logarithmic data plotted on linear and logarithmic interval scales 
in the right column.

of a constant suggests decreased variability on the logarithmic interval axis 
but not on the linear interval axis. This illustrates the superiority of linear in
terval display scales for representing linear interval variability in ratio data be
cause such axes are transform ation invariant by addition. Analogously, 
logarithmic interval displays will produce changes in the appearance of varia
bility under any transform ation other than multiplication by a constant.

The tactic this discussion suggests is that if the data to be analyzed are meas
ured on ratio scales, they may be displayed on either linear or logarithmic in
terval vertical axes. However, it is param ount that the scale chosen for the 
vertical axis corresponds to the type of variability observed in the data. For 
instance, if the data vary linearly, the investigator should assess them on a linear 
interval vertical axis, whereas data that change exponentially over time are 
best described on logarithmic interval scales. In fact, some have argued that 
changes in rates of responding tend to change exponentially and should gener
ally be displayed on logarithmic interval scales (e.g., Koenig, 1972; Pennypack- 
er, Koenig, & Lindsley, 1972; White & Haring, 1976).

The consequences of displaying ratio data on vertical axes that do not cor
respond to the observed pattern o f variability are illustrated in Fig. 10.5, which 
shows the graphical effects of displaying data that change in linear and logarith
mic fashion on linear and logarithmic vertical axes. Note that plotting linear
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interval data on a logarithmic interval axis has the effect of dampening the 
appearance of variability in the second phase compared to its pattern on a linear 
interval axis. In contrast, displaying logarithmic interval data on a linear in
terval axis makes the changes in responding in the second phase appear to in
crease dramatically, although the effect on the logarithmic interval axis shows 
a more m oderate change. In summary, using a scale that is im proper for the 
nature of the data may make it difficult to detect the true nature of the ob
tained variability.

In passing, note that the previous discussion has assumed that the data sub
jected to analysis are unmodified from those collected through the m easure-, 
ment process. However, it is possible to perform mathematical procedures that 
change the raw data before they are analyzed by graphical (or quantitative) 
means. Under these or any other conditions, alterations of the data can change 
only the appearance of variability, not the nature of variability in the phenom e
non. Recall that the more restrictive the scale, the less restrictive the changes 
to the data. Thus, linear interval raw data may be changed by any function 
that preserves equal intervals, and logarithmic interval data may be modified 
by functions that retain equal differences betw een equal ratios.

Finally, when measurement detects no instances of the target response class, 
another set of graphic guidelines is required. W hen using linear interval scales, 
zero may be assigned to the horizontal axis and zeros plotted accordingly. When 
a logarithmic interval scale is used, zeros are not possible, and there is no proper 
way to display them. However, Pennypacker, Koenig, and Lindsley (1972) sug
gested a procedure that provides a useful graphic, result in the case of frequen
cy. They argued that we cannot say that a. rate is zero because that is not 
mathematically true and would imply that the behavior never occurs. The mini
mum frequency possible is only known to be less than one response divided 
by the time of observation. This value is called the record floor (Pennypacker, 
Koenig, & Lindsley, 1972) and is considered to be a lower limit on observable 
frequencies. Plotting the record floor assigns a non-zero value to a measure
ment interval in which no observations occurred, although this introduces sys
tematic error. This procedure is merely one of many possible ways of 
representing zeros on a logarithmic interval scale, but none can be correct.

Selecting the A ppropriate D isplay Scale

Determining the nature of variability is not always an easy task because this 
characteristic can itself vary across and even w ithin phases. The typical cir
cumstance under which behavior analytic investigators face these decisions 
involves data from multiple phases of an experiment across multiple, individual 
subjects. These data may exhibit variability that show either linear or logarith
mic trend or no trend at all. Thus, the challenge of the display scale decision 
is to represent multiple aspects of variability that will suit a number o f sets 
of data w ith different characteristics.

This would be an impossible task if one were limited to a single display scale. 
Although the scale decision may be made separately for each phase or po r



tions of a phase, it will usually be simplest to begin by p lo tting  all of the data 
from an experim ent on both linear and logarithmic interval scales. This prac
tice may help evaluate the appropriateness o f the display scale for each data 
set phase by phase. It may also focus the investigator’s deliberations on choos
ing the best scale for making experim ental inferences.

This tactic requires considering which display scale is m ost appropriate for 
analytical purposes at the level of each distinguishable pattern  of data, whether 
they constitute an entire phase or only a po rtion  of a phase (such as the transi
tion at the beginning of the phase or the steady state at the end of the phase). 
Having constructed both linear and logarithmic interval graphs, one then 
searches each graph for patterns of variability that indicate the type of display 
scale required for effective inferences. It m ight be easiest to  begin by looking 
for trends. Although a trend may be suggested on one o r the  other graph, the 
nature of the change may not be obviously linear or exponential, and it may 
be necessary to calculate the mathematical function that describes the data set. 
Although this step is unfamiliar in most behavioral research, the now  exten
sive role of computers in data storage and analysis can make it simple and fast. 
If it is determ ined that the change in data is clearly linear or exponential, then 
one or the other graphic scales is unequivocally required, as Fig. 10.5 shows.

W hen the data do not exhibit relatively consistent change or trend on either 
graph, the decision about a graphic scale for analytical purposes is more difficult 
because it involves some complex judgments. The general rule in this case is 
to use (a) the scale that is required by the nature of the data (which is deter
mined by the phenom enon and the m easurem ent scale used to observe the 
data), (b) the nature of the variation in the data, (c) the inferential needs of 
the experimental question and the literature, (d) the directions of the investi
gator’s curiosity, and (e) the history of the audience. Having already discussed 
the options provided by the nature of the data, we consider each of the re
maining factors.

Aside from these other considerations, trendless data may be usefully ana
lyzed on either scale. However, the scale choice may determ ine the aspects 
of the data that the investigator comes in contact with. For instance, vertical 
“ bounce” appears different depending on the display scale chosen. If data are 
displayed on a logarithmic interval scale, variability will be represented in terms 
of proportional change, but if data are displayed on a linear interval scale, varia
bility will be represented in terms of absolute change. In o ther words, an in
crease of two responses per minute is proportionally  less on a logarithmic 
interval scale if responding is generally at a level of 100 responses per minute 
versus a level of one response per minute but equivalent on  a linear interval 
scale. Figures 10.3, 10.4, and 10.5 show the importantly different consequences 
of these alternatives on the pictures that the viewer sees.

If the experimental question or the literature directs the investigator’s at
tention to absolute changes in data, a linear interval scale may be the most 
appropriate choice because the logarithmic interval scale can dampen the ap
pearance of such variation. However, if the investigator is interested in mak
ing inferences about stability of data in o rder to im plem ent phase change

GRAPHIC DISPLAY 1 4 5
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procedures, a logarithmic interval scale may be the most appropriate choice 
so that decisions are not influenced by minor variations in data.

W hatever the scale decisions, the impact of the scale attached to the verti
cal axis is sufficiently powerful in controlling viewer interpretations that as
suring the proper scale for graphic analysis is mandatory. But w hat defines 
“p roper” ? Is there a correct or right scale for each set of data? In a sense, there 
is, and it is the “bottom  line” of all science referred to in an earlier section. 
The best or correct display scale is the one that leads to interpretations of the 
data in light of the experimental question that, in turn, lead to effective ac
tions on the part of users of the scientific literature. This rule is inviolate be
cause it comes from nature rather than logical systems, traditions, training 
histories, or individual biases.

It is these other influences over scale decisions that have tended to dominate 
display practices. For instance, the almost rigid tradition in behavior analysis 
is to plot data on linear interval scales. This has so biased our interpretation 
of data that linear interval scales now function as a de facto standard for in
formally evaluating other scales. Thus, many might view logarithmic interval 
axes as “ distorting” the data or hiding the “ true” pattern of variation. 
However, as we have pointed out, behavior is usually measured on ratio scales, 
w hich provides both  logarithmic and linear interval possibilities for analysis. 
We therefore have no general reason to impose linear interval display charac
teristics. Neither alternative is generically more “ right” than the other (unless 
behavior change is generally proportional or absolute—as with biological ver
sus chemical phenom ena, for example).

QUANTIFICATION 

A ppropriateness o f  D escrip tive Statistics

W hen the nature of variability in the data and the investigator’s interests sug
gest that an increased level of descriptive precision might be useful, the data 
may be subjected to a number of quantitative procedures. In doing so, many 
of the same points discussed in the context of graphic display remain relevant. 
In general, Stevens’ classification of measurement scales on the basis of invar
iance provides an equally useful method of assessing the appropriateness of 
statistical measures of variability.

A statistic is appropriate for use on a particular scale if it is invariant when 
permissible mathematical transformations are made on the scale values. Stevens 
(1951) argued that this invariance may be of twro types. First, if a statistic is 
dimensionless (i.e., unitless), the numerical value of the statistic will remain 
fixed when the scale is transformed. Unitless statistics are those that are calcu
lated from ratios of like dimensional quantities, which results in cancellation 
of the attached units. These statistics are the most useful in science because 
they allow general comparisons that are independent of the original quanti
ties represented by the data.
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Second, if the statistic has a dimension, the num erical value will change un
der scale transformations, although the measured property  will remain invari
ant. For example, the standard deviation will vary in proportion to the constant 
of multiplication required to change measurem ent units (i.e., s' = ks). This 
is not invariance of the statistic, but invariance of the dim ensional quantity 
of the phenom enon. The result of including this second type of invariance 
is that many statistics are appropriate for use on various scales, and virtually 
all statistics are appropriate for use on ratio scales (see Table 10.1), which 
Stevens acknowledged (1959).

However, Ellis (1966) proposed m ore stringent criteria for determ ining the 
appropriateness of statistics that renders Stevens’ classification system more 
restrictive and, therefore, more useful. He argued that only those statistics that 
are numerically invariant under permissible transform ations for a particular 
scale are appropriate for use on that scale, regardless of w hether units of meas
urement are still attached.

This classification system provides a convenient m ethod for assessing the 
appropriateness of statistics. However, they are no t exhaustive frameworks 
in the sense that they solve all judgm ents concerning quantification o f obser
vations. Stevens (1951) stated:

As I see this issue, there can surely be no objection to anyone computing any 
statistic that suits his fancy, regardless of where the numbers came from in the 
first place. Our freedom to calculate must remain as firm as our freedom to speak.
The only question of substantial interest concerns the use to which the calculat
ed statistic is intended. What purposes are we trying to serve? (p. 29)

How, then, are we to choose between statistical measures of variability such 
as the range, the variance, the standard deviation, or the coefficient of varia
tion? If our purpose is to make statem ents regarding the logarithmic interval 
properties of behavioral data, the appropriate statistics are those that are in
variant under permissible logarithmic transformations. On the other hand, if 
our intent is to make statements about the interval properties of behavioral 
data, statistics that are invariant to linear transformations are appropriate.

As a descriptor of variability, the range has limited value because it con
siders only two values in a set. Furthermore, unless expressed as a ratio (the 
larger value divided by the smaller), it retains the data’s units of measurement 
and cannot be used to compare across different measurement quantities.

The standard deviation (and variance) considers all values in a set, but de
fines variability as deviations from a measure of central tendency (the mean). 
In doing so, it also retains the units of measurement, although its definition 
of variability in terms of the mean is a m ore serious problem. For instance, 
if a data set has some extreme values, the mean will be affected by these outliers.

The standard deviation is appropriate for use on linear interval data because 
it is invariant under transformations allowable on linear interval scales. The 
standard deviation is not appropriate for use on logarithmic interval data, 
however, because its numerical value varies under transformations allowable
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on logarithmic interval scales. The standard deviation is transformation vari
ant by multiplication because deviations about the mean are altered in propor
tion to the constant of multiplication. Table 10.3 shows the effects of addition 
(a linear interval transformation) and multiplication (a logarithmic interval trans
formation) on standard deviation values.

One strength of the standard deviation is that it considers all values in a 
set. However, it does so in terms of deviations from the mean, which is not 
consistent with the traditional conception of variability as the degree to which 
each value differs from every other value in a set, w hether comparisons are 
accomplished by absolute or relative methods. Of course, the standard devia
tion has the advantage of tradition. Those trained in the social sciences are 
familiar w ith its meaning because we have so often related standard deviation 
values to other representations of the data. However, tradition alone cannot 
be a secure defense for scientific practices.

Therefore, we might consider other descriptive statistics that meet the fol
lowing requirements: (a) independence from the mean, (b) involvement of all 
possible comparisons of each value w ith every other value, and (c) appropri
ateness to scale requirements. A great many descriptive techniques have been 
developed to serve particular needs, and many meet some of these require
ments. Volumes such as Hoaglin, Mosteller, and Tukey (1983) and Tukey (1977) 
contain excellent discussions of ways of using such techniques, but we can
not review this large statistical literature in the context of the issues raised in 
this reading.

Instead, we introduce tw o descriptive statistics that do meet all of our re
quirements and, in the process, provide a brief, informal model for evaluating 
the appropriateness, performance, and utility of such quantification techniques. 
Although these statistics have properties that w arrant exploration and com
parison to traditional techniques, we are not proposing that they are general
ly superior to other methods. Finally, even though it is possible to evaluate 
statistics from a purely mathematical perspective, the discussion of these two 
statistics will approach matters from the perspective of the behavioral scien
tist, who is sensitive to the function of statistics in controlling verbal behavior.

Absolute Mean D ifference

D e fin itio n .  The absolute mean difference (AMD) takes an average of the 
absolute value of all possible differences || X i  -  X j 11, such that i < j .  The 
formula for the AMD is given in Fig. 10.6. The AMD therefore represents varia
bility by reflecting the average degree to which we might expect any one value 
to differ from every value.

For instance, if we calculate the AMD on a data set that contains four values, 
we would form the following differences:

|| X, -  X2 || || X, -  X3 || || X, -  ||
\ \ X 2 - X i \\ \ \ x 2 - x 4 \\

II *3 -  *4 II
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TABLE 10.3
Standard Deviation, Absolute Mean Difference, and Absolute Mean Ratio Values 

Resulting From Data Transformations

Data
Standard
Deviation

Absolute
Mean

Difference

Absolute
Mean
Ratio

A = (4,2,3,1,3) 1.14 1.4 1.89
A + 10 = [14,12,13,11,13! 1.14 1.4 1.12
A .10 = (40,20,30,10,30] 11.4 14 1.89

There are n(n -  l) /2  such differences. Therefore, the AMD is the sum of the 
indicated differences divided by 6 .

P ro p e r tie s  R e la te d  to  L in e a r  In te r v a l Sca les. The appropriateness 
of the AMD for use on linear interval data may be determ ined by evaluating 
its perform ance under particular transformations of scale values. Consider 
again the values in Table 10.3. W hen initial values o f X  are changed by addi
tion of a constant of 10, the calculated value of the AMD does no t change. 
The reason for this is that differences are not altered by adding a constant 
to each value. Given this information, we may state the first property  of 
the AMD: that it is transform ation invariant by addition or subtraction of a 
constant.

A second property of the AMD is that it is transform ation variant by mul
tiplication or division of a constant. Consider once m ore the values in Table 
10.3- W hen each value is multiplied by 10, the AMD changes because differ
ences are altered by transform ations of multiplication and division. Thus, the 
AMD is an inappropriate measure of variability on logarithmic interval scales 
because it varies under transform ations that preserve the logarithmic interval 
features of the scale (see Ellis, 1966). It can also be show n that the AMD, like 
linear interval graphic displays, will vary under any transformation other than 
addition of a constant.

A d d it io n a l  P ro p e r tie s  o f  th e  AMD. There are several other properties 
of the AMD that are useful, though not directly related to an evaluation of its 
appropriateness for use as a measure of behavioral variability. Consider the 
tw o graphs in Fig. 10.7. W hich function appears m ore variable? Close inspec
tion reveals that they are draw n from a rearrangement of the same data points 
and are in fact equally variable, but the order of occurrence may have in-

AMD =
2 1  I X , -  X,

■<J_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

n(n -  1)
FIG. 10.6. Definitional formula for the Absolute Mean Difference (AMD).
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FIG. 10.7. Linear interval graphic representation of tw o data sets constructed 
by rearranging the sequence of the same values.

fluenced y ou r judgm ent. In fact, the AMD values are equivalent for the tw o 
sets of data. This illustrates a th ird  property  of the AMD—that it is perm uta
tion invariant, or no t influenced by order of occurrence. This p roperty  is im 
po rtan t because subjective in terpretations based on graphic displays of 
variability m ay be influenced by clusters of similar values or extrem e differ
ences w h en  they occur in tem poral proxim ity.

A fourth  p ro p e rty  of the  AMD is that it retains the units o f m easurem ent 
of the raw  data. The AMD is therefore not a good general descrip tor of varia
bility and m ay no t be used to com pare variability in behavioral data sets result
ing from  different dim ensional quantities. However, w hen  com paring data sets 
involving the  sam e quantities, the attached units p resen t no problem s.

A fifth p ro p erty  o f the AMD is that it has a low er lim it o f zero and no upper 
limit. If there  is no  variability in a set of values (as w hen  all values are equal 
to each o ther), com puting the  AMD will yield a value of zero. If there is a great 
deal o f variability in a set o f values, the AMD will reflect this w ith  an appropri-
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FIG. 10.8. Six data sets o f increasing amounts of variability and obtained AMD 
values.

ately high value. It has no upper limit. Figure 10.8 show s six hypothetical data 
sets constructed  so as to relate a familiar graphic rep resen ta tion  o f variability 
to the AMD values.

Finally, recall that the process of subtraction  leaves th e  units o f m easure
m ent attached to the AMD values. W hether this is a prob lem  depends on  the 
use to  w hich the statistic is pu t. If a com parison involves AMD values calculat
ed from m easures of the sam e dim ensional quantities and units, there is no 
problem . If the com parison involves values based on  th e  same quantity  (such 
as duration), but different units (e.g, seconds versus m inutes), one of the values 
m ust be converted  by m ultiplication o r division in o rd e r for the com parison 
to be m eaningful. If, how ever, the dim ensional quantities represen ted  by the 
raw  data are no t the same (e.g., du ration  versus force), a com parison in term s 
of AMD values is no t m eaningful.

In o ther w ords, statistics such as the AMD, w hich  retain  the data’s units 
of m easurem ent, limit com parisons to those based on  data o f like dim ensional
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quantities and cannot serve as a general descriptor o f variability. This does 
n o t w eaken their utility under m ore parochial circum stances, but it does give 
ratio-based statistics an im portant advantage. Aside from the mathematical oper
ations underlying d ifferent statistics, the general practice of looking at varia
bility in term s o f ratios encourages the developm ent of a m ore coheren t 
scientific data base than is likely to  emerge from  a focus on differences. Such 
an approach allows us to relate our observations to any others in terms of scalers 
(e.g., “Jo n es’ baseline data from his 1981 paper are 2.4 times as variable as 
Sm ith’s treatm ent data in the 1987 artic le” ). The follow ing discussion p ro 
vides an exam ple o f a ratio-based statistic.

A b so lu te  M ean R atio

D e fin i t io n .  The absolute mean ratio (AMR) is calculated in a similar m an
ner to  the  AMD except that it takes an average o f all possible ratios (X i/X j)  
such tha t i < j .  The form ula for the AMR is given in Fig. 10.9- (The AMR is 
the same statistic called Kappa in chapter 17 of Johnston & Pennypacker, 1980.) 
As can be seen, the form ula for the AMR may also be represen ted  as “geom et
ric absolute m ean ra tio ,” w hich may be easily approxim ated on sem ilogarith- 
mic graphs. The AMR represents variability by reflecting the average degree 
to  w hich w e might expect any one value to differ from  every value (Johnston 
& Pennypacker, 1980, chapter 17).

For instance, if w e calculate the AMR on a data set tha t contains four values, 
we w ould  form  the follow ing ratios:

|| In X x/ X 2 |1 || In X x/X li || || In X , /X 4 ||
W l n X t / X i W  11 In X 2/X 4 11 

|| In X J X A ||

T here are n(n  -  l ) /2  such ratios. Therefore, the AMR is the sum of the indi
cated ratios divided by 6 .

P r o p e r t ie s  R e la te d  to  L o g a r i th m ic  Sca les . Because the AMR is calcu
lated on  the  basis o f ratios, it has a num ber of p roperties that are unique to 
a statistic o f this type. For example, the AMR is affected by changes in  data 
tha t w ould  no t affect a statistic that is calculated from  differences, such as the 
AMD. Therefore, the appropriateness of the AMR for use on logarithm ic in te r
val data m ay be determ ined  by evaluating its perform ance under particular 
transform ations of scale values. Consider again the values in Table 10 3. W hen 
initial values of X  are m ultiplied by 10, the calculated value o f the AMR does 
no t change. The reason for this is that ratios are no t altered by m ultiplying

AMR =  antilog 2 1 I In X, -  In X,
•*<j ________ ____  1

n(n -  1
FIG. 10.9. Definitional formula for the Absolute Mean Ratio (AMR).



QUANTIFICATION 153

each value by a constant. Given this inform ation, we may state the first property 
of the AMR: It is transform ation invariant u n d er m ultip lication  o r division by 
a constant. Note the contrast w ith the AMD, w hich  varies under multiplication.

A second p roperty  of the AMR is that it is transform ation variant by addition 
or subtraction of a constant. C onsider once m ore the values in Table 10.3. W hen 
10 is added to each value o f X , the AMR changes because logarithm ic interval 
values are altered by transformations of addition and subtraction. Thus, the AMR 
is an inappropria te  measure of variability o n  in terval scales because it varies 
under transform ations that preserve the linear in terval features o f  the scale. 
It can also be show n that the  AMR, like logarithm ic in terval graphic displays, 
w ill vary under any transform ation  o ther than  m ultip lication  o f a constant.

A d d i t io n a l  P r o p e r t ie s  o f  th e  AM R. T here are several o th e r properties 
of the AMR that are useful, though  not d irectly  re la ted  to  an evaluation  o f its 
appropriateness for use as a m easure o f behavioral variability. For instance, 
as w ith the AMD, the AMR is perm uta tion  invariant. T he calculation o f the 
AMR from  the data in Fig. 10.7 provides values o f 1.77 in bo th  cases.

H ow ever, unlike the AMD, the AMR is unitless because like m easurem ent 
units cancel w hen  placed in ratio to  each o ther. T herefore, the AMR m ay be 
used to com pare variability in behavioral data sets resulting from  different 
d im ensional quantities. Furtherm ore, because the AMR is invariant to  trans
form ations by m ultiplication and division, it m ay be used to assess variability 
across d ifferent units of m easurem ent.

A fifth p ro p erty  o f the AMR is tha t it has a low er lim it of one and no upper 
limit. If there  is no variability in a set o f values (i.e., w hen  all values are equal 
to each other), the  AMR will yield a value o f one. If there  is a great deal of 
variability in a set o f values, the AMR will reflect this w ith  an appropriately  
high value. It has no maximum value. In o rder to suggest the m eaning o f differ
en t values o f AMR in a fam iliar context, the  graphs in Fig. 10.10 indicate a 
w ide range o f variability and the  associated AMR values.

Lastly, the AMR is undefined for zero data  values because it is calculated 
from  all possible ratios in a set. If zero occurs in the  denom inator, division 
by zero occurs and the result is undefined. This apparen t p roblem  raises an 
interesting bu t challenging issue tha t has b road  im plications for b o th  graphic 
and quantitative techniques. Should we in te rp re t reports o f m easurem ent that 
detec t zero responding in the sam e m anner that w e in te rp re t reports that 
describe som e responding? U nfortunately, this topic goes beyond the scope 
of the present discussion because the solution requires consensus on the m ean
ing o f “ ze ro ” responding.

T actics o f  D escr ip tiv e  S tatistics

The field o f behavior analysis partly  defines itself by its insistence on  m ain
taining the critical qualities o f behavioral data in undilu ted  form  th roughou t 
the to rtuous processes o f inferential statistical m achinations (see Reading 8). 
As a result, w e have learned to revere m ethods o f graphic analysis; but, even
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w hen  used well, they have their lim itations and can even be misleading. 
D escribing graphed features o f variability in w ords is often sim ply too  im pre
cise for our needs. After all, variability is the data of science, and w e should 
w ork  tow ard  the goals o f quantification that are so successfully reflected in 
the natural sciences. It should  n o t be sufficient to say that “ responding in
creased over baseline” w hen  one investigator’s “ increase” may be quite differ
en t from  an o ther’s.

W hen properly  used, descriptive statistics can increase p recision  o f refer
ence. It is probably m ore difficult than most realize to detec t all o f the useful 
aspects of variation in a set of data merely by exam ining a g raph or tw o. For 
instance, consider the five data .sets in Fig. 10.11 displayed on linear (left) and 
logarithm ic (right) in terval graphs. Attempt to  rank each set in term s of varia
bility from  least to greatest. W hich one is m ost variable? W hat are your crite
ria fo r this decision? Are you just looking at vertical bounce?

Table 10.4 displays the results of both AMD and AMR calculations from these 
five data sets. You can see that the question o f w hich set is m ost variable is

FIG. 10.10. Six data sets o f increasing variability and obtained AMR values.
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FIG. 10.11. Five data sets plotted on linear interval scales (left) and logarithmic 
interval scales (right) representing different degrees of variability.

difficult to  answ er w ithou t quantitative guidance. Furtherm ore, the answ er 
partly  depends on the aspect o f variability tha t is rep resen ted  by the  graphic 
scale o r the  statistic tha t one uses. A ccording to  bo th  the  AMD and the  AMR, 
Data Set C is the m ost variable, bu t the agreem ent be tw een  these tw o  statistics 
ends there. The AMD finds Data Set E th e  least variable, w hereas the  AMR as
signs this status to Data Set B. T here is no agreem ent be tw een  the tw o  statis
tics on  the  o ther rankings.

The AMD produces its rankings by looking at differences betw een  values, 
and the larger the differences, the larger the AMD value. Thus, the large differ
ences am ong Data Set C contrast w ith  the small differences in Data Set E’s data, 
even though  the linear scale and its rep resen tation  on  the  vertical axis make 
Data Set E look m ore variable. If you find it difficult to accept D ata Set E as 
less variable than Data Set C, it is because w e have uncritically fallen in to  the 
trap of inform ally evaluating variability p rim arily  in term s o f vertical bounce.

In contrast, the AMR makes its evaluations in terms of ratios betw een  values,
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TABLE 10.4
Absolute Mean Difference (AMD), and Absolute Mean Ratio (AMR) 

Values for Sets A-E in Figure 10.11

Set AMD AMR

A .71 2.64
B 13.72 1.27
C 136.24 8.13
D 28.24 1.61
E .33 2.52

w hich  often do  no t correspond  to  differences. A lthough it agreed w ith  the 
AMD on the m ost variable data set, it found the average ratio  in Data Set B 
less than the average ratio  in Data Set E. The AMR also found Data Set A the 
second m ost variable set, w hereas the AMD described those data as the second 
least variable set.

W hich ranking is correct? This question cannot be answ ered w ithout specify
ing the reasons for com paring variability and the aspects o f variability that are 
relevant to the experim ental question and the data. For instance, if Data Sets 
E and B w ere bo th  generated in support o f the same experim ental question 
concerning effects of pharm acological agents on some aspect of behavior, small 
differences m ight be quite im portant. Under this circum stance, the data in 
G raph E m ight be described as less variable than  those in Set B, as ranked by 
the AMD. On the o ther hand, if the question of am ount o f variability is asked 
in the abstract, the correct answ er depends entirely on  how  you choose to 
assess variability.

A lthough making a general assessment of the degree of variation in these 
five sets of data is challenging, there are a num ber of o th e r kinds of inform a
tion  about variability that one m ight wish to examine. For instance, although 
one rarely has to  rank o rder data sets in term s o f their variability, w e often 
need to know  how  m uch variability characterizes sets o f data. In the abscnce 
o f quantifications of variability, this question cannot be answ ered. A nother 
general aspect o f variability is w hether it changes under certain conditions and 
in w hat specific ways. Applying this curiosity to any of the graphs in Fig. 10.11 
should convince one of the need for statistical aids. We briefly consider som e 
of the  m ore com m on ways of using quantitative procedures.

In describing changes in variability or lack of change, descriptive statistics 
p rov ide  the needed  precision and continuity  of reference. For example, ex
perim ental com parisons that depend  on repeated m easures of responding un 
der constan t conditions w ith in  phases require the investigator to make 
judgm ents about the stability o f grow ing sets of data in o rder to decide w hen 
a representative picture o f responding has been attained.

This task is easily aided by the appropriate statistic. T he problem  requires 
a statistic that involves com parisons of all observations w ith  each other (range 
is o ften  too  crude a measure for this task). The sim plest approach is to  d e te r
m ine the p roper scale o f analysis based on the characteristics of the data, to 
calculate either the AMD or the AMR (or some o ther appropria te  statistic) for
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each phase (or p o rtion  o f a phase) in question , and then , to  com pare the ou t
comes. A lthough the values genera ted  by this practice w ou ld  at first be un 
familiar, their pairing w ith  graphic represen tations o f data w ou ld  soon 
encourage experim enters to  com pare th e  degree o f  stability  atta ined  across 
phases and even experim ents.

A variation o f this p rocedure  is to  recalculate the  AMD or the AMR for the 
entire data set as each new  data p o in t is added. Fig. 10.12 show s graphs o f 
AMR values on the bo ttom  left and  righ t that w ere calculated from  the base
line and experim ental phases, respectively , of the upper graph. N otice from  
the baseline graph o f AMR values (low er left) that th e  function  approaches a 
horizontal asym ptote. This indicates tha t the data are increasingly stable.

B A S E L IN E  T R A IN IN G

S E S S IO N S

2.00

1.00 ----—----■----—----■-------- - ---- ----- ■-------- —--- . ■ ■ .
0 5 10 15 20 0 5 10

N U M B E R  OF DATA P O IN T S

FIG. 10.12. Graphs o f baseline and experimental phases o f  an experiment (top 
graph) and graphs of AMR values calculated as data points accumulate for the 
baseline phase (lower left graph), and for the experimental phase (lower right 
graph).



15 8 READING 10

H ow ever, also notice tha t the graph o f AMR outcom es ob tained  from  the ex
perim ental phase (lower right) is not approaching an asym ptote, indicating that 
a steady state has no t been achieved. Care should be taken  in using this tech
nique because the influence o f additional data values decreases as the total num 
ber o f values in the calculation increases. This prob lem  can be avoided by 
calculating the statistic based on a fixed num ber of the  m ost recen t consecu
tive sessions.

In the event tha t the data show  change correlated  w ith  the passage of time, 
w e m ay still assess stability by perform ing a tim e-series analysis and calculat
ing one of these statistics based on com parisons am ong the actual data values 
and the predicted ones from  the tim e-dependent function. Figure 10.13 is taken 
from  Jo h n sto n  and Pennypacker (1980, chap ter 17) to  illustrate this tactic in 
the case o f the AMR. The tim e series generated the sm o o th  line, and ratios 
w ere calculated betw een  observed values and their p red ic ted  counterparts. 
This process yields a value that will vary inversely w ith  the  stability o f the data.

Another com m on analytical need is to evaluate changes in variability in order 
to relate them  to  system atic variations in treatm ent conditions. The AMD and 
the AMR can similarly be used to evaluate changes in variability  across and 
w ithin experim ental phases. Consider the data plotted in Fig. 10.14 on logarith
mic in terval (bottom ) linear interval (top) scales. We m ay calculate the same 
statistic fo r each phase and com pare the outcom es in the form  o f a ratio  to 
get a m easure of relative change in variability across phases (note that the units 
of m easurem ent attached to AMD values cancel as a result). W hen this is done, 
we see that the experim ental phase is only 63% as variable as the baseline phase 
in term s o f the AMR and 67% as variable in term s o f the AMD. This is difficult 
if no t im possible to determ ine from the graphic display alone.

We have described som e analytical tactics that m ay enhance the likelihood 
that the experim en ter’s in terpre tations will be under effective con tro l of the 
study ’s p rocedures and the real variability represen ted  in the  data. We have 
argued tha t no  single analytical technique should be considered  sufficient or 
correct. A search for those procedures that may be usefully revealing should 
take in to  account the im plications that the phenom enon  o f behavior have for

FIG. 10.13. Graph illustrating the difference between an obtained time-series 
function and actual data points used to quantify time-dependent variability.
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FIG. 10.14. AMD and AMR values for baseline and experimental phases that may 
be placed in ratio to each other to get a measure of relative change in variability 
across phases.

how  w e describe and talk about variability. M easurem ent scales are the m athe
matical rules under w hich w e conduct and describe m easurem ent o f behavior, 
and analytical techniques m ust be evaluated under these constrain ts.

The field o f behavior analysis is unique am ong the natural sciences in being 
able to  approach the behavior o f its researchers w ith  the same understanding 
that it brings to the investigation o f its subjects’ behavior. We should  there
fore be able to appreciate tha t our understanding of the nature  o f behavioral 
variability and our approach to its experim ental treatm ent and in terpre tation  
provides unavoidable and pow erfu l limits to  the  effectiveness o f ou r scientif-
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ic and technological research enterprise. Although we have not tried to describe 
contem porary  practices in the field, even casual inspection  w ill show  that the 
treatm ent o f variability in behavioral data can be im proved. In doing so, w e 
should rem em ber that the  most general strategy is to bring our verbal behavior 
under effective con tro l o f the behavior of our experim ental subjects.



R E A D I N G  E L E V E N

Logic, Reasoning, 
and Verbal Behavior

INTRODUCTION

Skinner outlined a conceptual fram ew ork for the experim ental analysis o f ver
bal behavior in 1957 w ith  the publication  o f his book, Verbal Behavior. 
H ow ever, experim ental research based explicitly  on  this fram ew ork has 
em erged only in recent years. This still sparse body  o f w ork  included research 
on  the verbal operant classes o f m ands and  tacts (Hall & Chase, 1986; Lamarre 
& H olland, 1985), echoics (Boe & W inokur, 1978a, 1978b), and intraverbals 
(Braam & Poling, 1983; Chase, Johnson, & Sulzer-Azaroff, 1985). In addition, 
research  on the independence o f speaking and listening (Lee, 1981) and on 
self-editing (Hyten & Chase, 1986) has been inspired by Skinner’s w ork. This 
concep tual fram ew ork has also been utilized in analyses o f verbal discourse 
in group psychotherapy (McLeish & Martin, 1975), maladaptive verbal behavior 
o f the psychotherapy client (Glenn, 1983), aud ito ry  hallucinations (Burns, 
Heiby, & Tharp, 1983), and instructional design (Johnson & Chase, 1981).

Skinner (1957b) also devoted  a chapter o f  his book to an analysis of logical 
and scientific verbal behavior (chapter 18), and this analysis has been eluci
dated  by Schnaitter (1980). H um an logicality and reasoning have been topics 
o f investigation in psychology for decades (for review s, see Evans, 1982; 
Falmagne, 1975; Revlin & Mayer, 1978; W atson & Johnson-Laird, 1968). 
H ow ever, logic and reasoning involve verbal behavior and bo th  in terp re ta
tive and experim ental analysis based on Skinner’s fram ew ork are therefore ap
p ropriate . In this reading, the concepts o f  logic and reasoning are briefly 
analyzed in this conceptual contex t. First, w e describe and in terp re t the co n 
cep t o f p roposition  in behavioral term s. T hen, we analyze prem ises and co n 
clusions, rules of logic, deductive reasoning, and inductive reasoning as verbal 
behavior.

161
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T he proposition  is a basic com ponen t of logic and reasoning. T raditionally, 
th e  p roposition  has been conceptualized  in the follow ing m anner. There are 
acts in w hich one may engage tha t require som e sort o f object for their execu
tion. These acts are dep icted  by th e  transitive verbs. For exam ple, in o rder 
to  hit, there m ust be som eth ing  to  hit. This som ething, the object of the ac
tion , is dcpicted  by the accusative o f the transitive verb. Some transitive verbs 
dep ict w hat have been called acts of thinking (e.g., to know , believe, o r as
sume). To “ know , believe, or assum e” requires know ing, believing o r assum 
ing som ething. These som ethings, the accusatives of the acts o f thinking, have 
com e to be called propositions. A proposition  is w hat it is tha t one can know , 
believe, think, judge, assume, opine, and so forth  (Ryle, 1971). W hen an in 
dividual states o r expresses w hat it is that he o r she know s, that individual 
has em itted behavior tha t can be analyzed in Skinner’s fram ew ork (1957b).

To begin such an analysis, consider the behav io r-env ironm ent relation that 
Skinner (1957b) called the tact (chapter 5) because it w ill later be show n that 
tacts and propositions are closely related. A particular form  o f verbal response 
is consistently  reinforced in the presence o f a particular object or event (e.g., 
a ball) or a p roperty  o f an object or event (e.g., its roundness). If the object 
o r  event con tro ls the response, it is typically called a pu re  tact. If only som e 
p roperty  o f the object or event contro ls the response, it is called an abstract 
tact. T herefore, any given object may evoke several verbal responses, som e 
th a t are pu re  tacts and o thers tha t arc abstract tacts contro lled  by the object 
p roperties.

Rather than  sim ply em itting the  different forms of tacts separately (e.g., 
“ ball,” “ ro u n d ” ), an add itional response is o ften  em itted  that connects the 
tacts (e.g., “The ball is round”). Skinner (1957b) called this additional response, 
“ is,” the assertive autoclitic and stated that its function is to enjoin the listener 
to  “ accept a given state of affairs” (p. 326). One might say tha t the roundness 
o f  the ball is the state of affairs asserted by the speaker. H ow ever, it may be 
m ore useful to  consider tha t the p roposition , “ The ball is ro u n d ,” tacts a rela
tio n  betw een  the pure and abstract tacts “ ball” and “ ro u n d .” It is not the 
roundness o f the ball that evokes the entire response, “ The ball is ro u n d .” 
It is the relations am ong the object and each of its p roperties, as w ell as the 
respective tacts contro lled  by them , that evoke the u tterances of the p roposi
tion. This is essentially a case of predication (see Skinner, 1957b, pp. 334-335).

The concep t o f the tact relates verbal behavior to nonverbal characteristics 
o f  the env ironm ent (e.g., objects and properties o f objects). H ow ever, a sub
stantial p o rtion  o f the hum an environm ent includes verbal stimuli (e.g., the 
verbal behavior o f o ther individuals). Verbal behavior related  to these aspects 
o f  the environm ent is called intraverbal (see Skinner, 1957b, pp. 71-78). Some
tim es, subjects and predicates o f propositions may be related  intraverbally, 
ra th e r than tactually, to the environm ent. The emission o f such a response 
tacts the relation betw een the intraverbals and their stim ulating circumstances 
(e.g., “  ‘Jo h n ’ is a p roper n o u n ” ).

THE PROPOSITION
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Finally, it is not unusual fo r th e  p ro p o sitio n  to  include a quantifying au
toclitic (see Skinner, 1957b, p. 329 -330 ). U nder certain circum stances, the 
tact “ sw an” becomes “ the sw an” o r “ a sw an .” O ther circumstances may evoke 
discriminative behavior in the form  o f the response “ som e sw ans,” “ all sw ans,” 
or “ no sw ans.” Skinner asserted that, as autoclitic com ponents, these responses 
do no t m odify the  subject o f the  p ro position . Instead, the ir effect is to m odify 
the reaction o f the listener to the responses they accom pany. “ All” is “ m ore 
appropriately  taken as equivalent to  a lw ays  o r a lw a ys i t  is possib le  to sa y ” 
(Skinner, 1957b, p. 329)- Schoenfield (1969) described a relationship betw een 
the universal p roposition  (e.g., “ All sw ans are w h ite ” ) and the behavioral 
tendency tow ard  generalization. Such a response cannot possibly be under the 
con tro l o f all the sw ans in the universe. Yet, enough exposure to  reinforcing 
consequences in the presence o f variations o f stim ulus conditions will result 
in highly generalized stim ulus con tro l. The universal p roposition  tacts th e  re 
lation betw een the stimuli, the responses, and the generalization o f stim ulus 
control.

In sum m ary, the p roposition  is a com plex verbal response that com prises 
tacts or intraverbals m odified by particu lar autoclitics, such as “ is ,” “ all,” or 
“ som e.” As a unit o f behavior, th e  p roposition  functions as a tact in tha t it 
is contro lled  by the objects o f sim ple tacts o r intraverbals and the relations 
betw een verbal behavior and its environm ental control. In o ther w ords, w hen 
w e say, “ The ball is ro u n d ,” w e tac t n o t only the ball and its roundness, but 
our tendency to predicate roundness to the ball (Skinner, 1957b, pp. 334-335)-

Having described the speaker’s verbal behavior involved in uttering a p ropo 
sition, we m ay now  exam ine the effects o f such behavior on  a listener. If  be
havior p roduces reinforcing consequences, w e may say that it is effective. 
Responses producing  consequences tha t reduce the likelihood o f fu ture oc
currences o f a response class m ay be considered ineffective. This argum ent 
is analogous to the adaptiveness o f  characteristics tha t are exhibited  during 
the  evolution o f a species (Skinner, 1984a). The verbal u tterance of a p ro p o si
tion  may he effective or ineffective in producing  reinforcing consequences. 
The emission o f a proposition  m ay be reinforced w hen a listener accepts or 
believes it. A ccording to Skinner (1957b), “ O ur belief in w hat som eone tells 
us is . . .  a function  of, or identical w ith , ou r tendency  to  act upon the verbal 
stim uli w hich he p rov ides” (p. 160). Therefore, the u tterance o f a p roposi
tion  may be effective (i.e., accep ted  o r believed by a listener) regardless o f  its 
correspondence to  any state o f affairs or w hether it is considered to be true. 
Likewise, all utterance may be ineffective (i.e., rejected o r ignored by a listener) 
regardless o f its truth.

Additionally, the listener’s behavior in response to  the proposition  may also 
be classified as effective or ineffective. Again, behavior that produces reinforce
m ent is considered  effective. W hether the behavior of accepting or rejecting 
a p roposition  produces reinforcing consequences may have som ething to  do 
w ith  the “ tru th ” o f the statem ent. Skinner (1974) stated  that “ a p roposition  
is true to the ex ten t that w ith  its he lp  the listener responds effectively to  the 
situation it describes” (p. 235). This statem ent applies to tacts in general. Again,
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according to Skinner (1957b), “ behavior in the form  of the tact w orks for the 
benefit of the listener by extending his contact w ith the environm ent, and such 
behavior is set up in the verbal com m unity for this reason” (p. 85).

In sum mary, the u tterance of a proposition  has been defined as effective 
in tw o ways. First, if the listener accepts or acts upon  the p roposition  as a 
verbal stimulus, it has been effective. Second, if the behavior of accepting it 
p roduces reinforcing consequences, the proposition  is again effective. A p re
cise definition of tru th  as an epistem ological issue is no t required  by a be
havioristic analysis of the utterance o f propositions. According to Zuriff (1980):

Because of a specific phylogenetic and cultural history, humans have evolved so 
that they are affected in certain ways by verbal behavior, that is they believe cer
tain verbal behavior to be true. For the most part they do so without applying 
any explicit criteria of truth but rather because of human nature, (p. 348)

Exactly how  and w hy any given proposition  comes to be accepted as true by 
a listener is a problem  for em pirical psychology (Popper, 1959).

REASONING

P rem ises and C on clu sion s

If the listener’s behavior of accepting a proposition is reinforcing to a speakers’s 
behavior, the speaker may engage in responses that will increase the probabil
ity  of that reinforcing consequence. This supplem entary behavior may be con
sidered verbal to the extent that it is also reinforced by the  listener’s response. 
For exam ple, a speaker may increase the probability o f a listener accepting 
a proposition (i.e., reinforcing the speaker’s behavior) by emitting o ther p ropo
sitions that are m ore readily accepted by the listener. In the traditional lan
guage of logicians, these m ore readily accepted propositions are called 
prem ises, and the p roposition  w hose acceptability is subsequently  enhanced 
is called the conclusion. The acceptance of the prem ises is assumed to be at 
a greater strength in the listener’s behavioral reperto ire  than the acceptance 
of the unprem iscd conclusions. In som e cases, the speaker may preface the 
prem ises w ith the m and “ Suppose t h a t . . . ” This u tterance  may then  facilitate 
the  acceptance o f the conclusion.

In colloquial language, the speaker is attem pting to  “ prove a p o in t,” “ sup
p o rt a conclusion,” or “ convince” the listener of a p ro position ’s tru th , via
bility, or possibility. For example, a p rosecutor may assert o r p ropose  that a 
defendant is guilty o f som e crime. The acceptance o f this p roposition  by the 
m em bers o f a jury will be reinforcing to the p rosecutor. By itself, the single 
proposition  may have a minimal effect on the jury m em bers’ behavior. There
fore, the prosecutor produces o ther assertions that m em bers of the jury readi
ly accept as true. These assertions essentially describe the evidence for the 
conclusion (e.g., defendant was p resen t at scene o f crime; w eapon w as found
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in defendan t’s possession; defendan t’s alibi is w eak, etc.). If these prem ises 
have the in tended  effect on  the ju ry ’s behavior, it is m ore  likely tha t a guilty 
verdict w ill be returned. Thus, the m em bers o f the jury  w ill have accepted 
the p ro secu to r’s original p roposition  and probably  rein fo rced  tha t verbal be
havior.

The emission of propositions in such a m anner constitu tes a pa tte rn  o f ver
bal behavior that is traditionally called reasoning. Speakers reason w ith listeners 
w hen  they em it verbal behavior that alters the probability  o f the  listener ac
cepting certain propositions. In the previous example, the p rosecu to r provides 
reasons for the jury to accept the proposition that the defendant is guilty. Speak
ers are also said to  reason w hen  they em it p ropositions w ith  h igher levels of 
acceptability (premises) and thereby p ro d u ce  verbal stim uli th a t facilitate the 
em ission o f a concluding proposition . Prem ises may be em itted  in spoken or 
w ritten  form  and may occur in d ifferent o rders or sequences. T he products 
of this behavior, the verbal stim uli, may th en  set the occasion fo r new  p ro p o 
sitions to be em itted. We say that conclusions have been d raw n  or inferred 
from  the prem ises. A cceptance of conclusions, or, rather, effective behavior 
in response to conclusions may reinforce the pattern  of behavior tha t produced 
them .

Examples of this kind o f behavior are ubiquitous in science. T he behavior 
o f the scientific theoretician  includes a “ set o f m anipulative responses d irec t
ed. no t at the natural subject m atter o f the science, but at th e  verbal record  
o f tha t subject m atter, the d a ta” (Schnaitter, 1980, p. 159). Verbal responses 
tacting the results of experim ental m anipulations set the occasion fo r the emis
sion o f o ther verbal responses (i.e., conclusions are d raw n  and  theories are 
proposed). Similarly, som e scientists m ay respond  to  a num ber o f different 
theories by emitting a proposition that m ust be true if the theories (or premises) 
are true (i.e., a hypothesis). The research scientist then  goes on to  test this 
proposition  experim entally.

N onscientific verbal behavior may also involve inferring o r draw ing con 
clusions. For example, a salesperson may p rov ide reasons for buying a partic
ular p roduct at a particular time. The reasons m ay be acceptable to a potential 
buyer and ultim ately occasion the emission o f the conclusion, “ Now is the 
time to buy this item .”

In summary, a speaker may emit statem ents in ways that influence a listener’s 
acceptance or emission o f o ther statem ents. Specifically, the  emission o f the 
premises affects the acceptance or emission of conclusions. T w o senses of such 
verbal reasoning have been described in term s of the behavior o f the speaker 
and listener. In one sense, a listener’s behavior o f accepting a conclusion is 
m odified w hen  a speaker emits m ore readily  accepted prem ises. In another 
sense, a listener’s behavior o f em itting a conclusion is m odified w hen  premises 
are em itted in a particular m anner. In either case, the speaker and listener may 
be tw o (or m ore) different people or may be the same person . O ne may prove 
a p o in t to oneself as well as to  som eone else. Likewise, one m ay draw  o n e ’s 
ow n inferences as w ell as inspire som eone else to draw  them .

The m anner in w hich prem ises have such effects on conclusions is the topic
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of the rem aining sections of this paper. After a discussion o f “ rules” as descrip
tions o f regularity in patterns o f behavior, w e present analyses o f the concepts 
o f deductive and inductive reasoning.

L ogica lity  and R ules

Physical events occur in tim e, and the tem poral sequence in w hich they  occur 
may be described as a pa tte rn  of events. As a subset o f physical events, be
havior also occurs in tem poral sequences or patterns. Some patterns occur at 
a higher frequency than o thers, and these patterns com e to be recognized as 
regularities or consistencies in nature. Verbal behavior may tact pa tterns of 
events in  the sam e w ay tha t it tacts single events. Verbal behavior that tacts 
consistent patterns in nature generally results in statem ents that are typically 
called rules. For exam ple, certain  forms of verbal behavior described as gram 
matical are patterns o f behavioral regularities w ith  w hich  w e are fam iliar as 
rules. As verbal responses, rules tact not specific events but the relationships 
am ong the events (i.e., the  consistent or regular patterns in w hich  the events 
occur).

These verbal responses (rules) may originate as descriptions of regularity; 
how ever, they m ay very often becom e prescriptive by aiding in the verbal con
trol o f hum an behavior. For example, the rules o f gram m ar describe som e con
sistencies in the reinforcem ent practices o f m em bers o f a verbal com m unity 
(Skinner, 1957b). These descriptions of reinforcem ent contingencies do  not 
necessarily affect the events they  describe. They are verbal descriptions, not 
the contingencies them selves. H ow ever, the rules may be “ helpful in in struc
tion and in m aintaining verbal behavior in conform ity  w ith  the usages of the 
com m unity” (Skinner, 1984b, p. 585).

It is im portan t to distinguish betw een rule-governed or rule-follow ing be
havior and rule-characterized behavior. Although any given set of responses 
m ay be described as corresponding  to some rule, the rule, as a descrip tion  of 
the contingency, does no t necessarily contro l the behavior. The contingency 
itself may con tro l the behavior. For example, an individual may be described 
as speaking gram m atically, although the verbal behavior is entirely  under the 
contro l of the prevailing social contingencies. This behavior may be called rule- 
corresponding  o r rule-characterized, but it is no t rule-follow ing or rule- 
governed. H ow ever, the cautious w riter or a speaker of a foreign language may 
consult a rule book , such as a style manual or d ictionary, before em itting a 
statem ent. Such verbal behavior may be considered rule-follow ing to the ex
ten t tha t the verbal stim uli, the rules, contro l the behavior; how ever, add i
tional con tro l exerted  by prevailing social contingencies is no t to be 
understated .

Furtherm ore, the degree o f contro l exerted by a verbal statem ent o f con 
tingencies may shift in the ontogenetic developm ent o f behavior (Buskist & 
iMiller, 1986; although cf. Hayes, Brow nstein, Haas, & G reenw ay, 1986). An 
individual learning a second language may first learn th e  rules o f gram m ar for 
that language, and  for som e tim e those rules may be m eticulously consulted
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before each utterance. H ow ever, once fluent, the speaker usually no longer 
consults rules before speaking. Rather the verbal behavior com es under the 
con tro l o f the foreign verbal com m unity ’s re in fo rcem ent contingencies.

W ith regard to reasoning, there are consistencies in the w ay prem ises might 
be em itted  in altering the probability  that a conclusion w ill be em itted  o r ac
cepted. Certain patterns or arrangem ents o f prem ises are m ore  effective than 
o thers in facilitating the emission or enhancing the acceptability  o f conclu
sions. A description o f these consistencies m ay be sta ted  in term s o f the re in 
forcem ent practices o f a particu lar verbal com m unity, such as the  logical/ 
scientific or the lay verbal communities. Furtherm ore, descriptions o f consisten
cies in reinforcem ent practices w ith  regard to  the em ission and acceptance 
o f propositions m ight be called the rules o f logicality.

The rules of logic, som etim es called the rules o f deductive inference (w hich 
are discussed m ore extensively in the next section), m ay be considered as a 
m ore form alized subset of the  rules o f logicality. At this p o in t, the  rules of 
logicality may be described as the broad set o f verbal responses tha t are tactu- 
ally related  to regularities in propositional verbal behavior (i.e., pa tterns of 
p roposition  utterances). W hen the emission o f propositions corresponds to 
such rules, the probability  o f re in forcem ent (i.e., the  accep tance o f the con 
clusion o r the emission o f an effective conclusion) is maximal. Because arrang
ing and em itting propositions is a verbal p rocess, the rules o f logicality may, 
along w ith the rules o f gram m ar, be considered a subset o f th e  rules o f lan
guage (i.e., the descriptions o f consistencies and regularities in the general rein
forcem ent practices o f a verbal com m unity).

Again, any given set of responses, such as those constitu ting  a logical dis
course, may be considered rule-characterized or rule-follow ing depending on 
the nature of the controlling variables. A student o f logic may consult the rules 
of deductive inference to d raw  a conclusion from  a set o f prem ises; yet an 
experienced logician may derive conclusions from  prem ises m uch in the same 
w ay tha t the experienced poet thinks in a particu lar poetic  m eter (Skinner, 
1957b, p. 422). In fact, it is highly probable that logical verbal behavior emerges 
or develops in the norm al course o f hum an developm ent under processes simi
lar to  those in the developm ent o f verbal behavior in general (e.g., Inhelder 
& Piaget, 1958, 1969).

D ed u ctiv e  R eason in g

In the  traditional language o f logicians, it is possible to arrange propositions 
in such a m anner tha t the conclusion is necessarily true, given prem ises that 
are true. That is, given an arrangem ent o f p ropositions tha t m ay be said to 
correspond  to  an actual state o f affairs, a concluding p roposition  can be fo r
m ulated tha t also corresponds to  the  particular state o f affairs. The form  o f 
such arrangem ents these propositions m ust take are characterized  by the fo r
mal rules of logic, sometimes called the rules of deductive inference. Behavioral- 
ly restated , patterns o f verbal response form s may consistently  p roduce 
effective behavior on the part o f the  listener (i.e., acceptance o f em ission of
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of the rem aining sections o f this paper. After a discussion of “ rules” as descrip
tions of regularity in patterns o f behavior, w e present analyses o f the concepts 
of deductive and inductive reasoning.

L ogica lity  and R ules

Physical events occur in tim e, and the tem poral sequence in w hich they occur 
may be described as a pa tte rn  o f events. As a subset o f physical events, be
havior also occurs in tem poral sequences or patterns. Some patterns occur at 
a higher frequency than o thers, and these patterns com e to be recognized as 
regularities or consistencies in nature. Verbal behavior may tact pa tterns of 
events in  the sam e w ay that it tacts single events. Verbal behavior that tacts 
consistent patterns in nature generally results in statem ents that are typically 
called rules. For exam ple, certain  form s of verbal behavior described as gram 
matical are patterns of behavioral regularities w ith  w hich  w e are familiar as 
rules. As verbal responses, rules tact no t specific events but the relationships 
am ong the events (i.e., the consistent or regular patterns in w hich the events 
occur).

These verbal responses (rules) may originate as descrip tions of regularity; 
how ever, they may very often becom e prescriptive by aiding in the verbal con
trol o f hum an behavior. For example, the rules of gram m ar describe some con
sistencies in the rein forcem ent practices of m em bers o f a verbal com m unity 
(Skinner, 1957b). These descriptions o f reinforcem ent contingencies do  not 
necessarily affect the events they  describe. They are verbal descriptions, not 
the contingencies them selves. H ow ever, the rules m ay be “ helpful in instruc
tion and in m aintaining verbal behavior in conform ity w ith  the usages o f the 
com m unity” (Skinner, 1984b, p. 585).

It is im portan t to distinguish betw een rule-governed or rule-follow ing be
havior and rule-characterized behavior. Although any given set of responses 
may be described as corresponding  to some rule, the rule, as a description of 
the contingency, does not necessarily con tro l the behavior. The contingency 
itself m ay con tro l the behavior. For exam ple, an individual may be described 
as speaking gram m atically, although the verbal behavior is entirely  under the 
contro l of the prevailing social contingencies. This behavior may be called rule- 
corresponding  or rule-characterized, but it is not rule-follow ing or rule- 
governed. H ow ever, the cautious w riter or a speaker of a foreign language may 
consult a rule book, such as a style manual or dictionary , before em itting a 
statem ent. Such verbal behavior may be considered rule-follow ing to the ex
ten t tha t the verbal stimuli, the rules, contro l the behavior; how ever, addi
tional con tro l exerted  by prevailing social contingencies is not to be 
understated .

Furtherm ore, the  degree of contro l exerted  by a verbal statem ent o f con 
tingencies may shift in the ontogenetic developm ent o f behavior (Buskist & 
Miller, 1986; although cf. Hayes, Brow nstein, Haas, & G reenw ay, 1986). An 
individual learning a second language may first learn the  rules of gram m ar for 
that language, and for som e tim e those rules may be m eticulously consulted
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before each utterance. H ow ever, once fluent, the speaker usually no longer 
consults rules before speaking. R ather the verbal behavior com es under the 
con tro l o f the foreign verbal com m unity ’s re in fo rcem ent contingencies.

W ith regard to reasoning, there  are consistencies in the w ay prem ises m ight 
be em itted  in altering the probability  tha t a conclusion w ill be em itted  or ac
cepted. Certain patterns or arrangem ents o f prem ises arc m ore  effective than 
o thers in facilitating the emission or enhancing the acceptability  o f conclu
sions. A description o f these consistencies m ay be stated  in term s o f the re in 
forcem ent practices o f a particu lar verbal com m unity , such as the logical/ 
scientific or the lay verbal communities. Furtherm ore, descriptions o f consisten
cies in reinforcem ent practices w ith  regard to  the em ission and acceptance 
of propositions m ight be called the rules o f logicality.

The rules of logic, som etim es called the rules o f deductive inference (w hich 
are discussed m ore extensively in the nex t section), m ay be considered  as a 
m ore form alized subset of the rules of logicality. At this p o in t, the rules o f 
logicality may be described as the broad set o f verbal responses tha t are tactu- 
ally related  to regularities in propositional verbal behavior (i.e., pa tterns of 
p roposition  utterances). W hen the emission o f p ropositions corresponds to 
such rules, the probability  o f re in forcem ent (i.e., the  accep tance o f the con
clusion or the emission of an effective conclusion) is maximal. Because arrang
ing and em itting propositions is a verbal process, the  rules o f logicality may, 
along w ith the rules o f gram m ar, be considered a subset o f the  rules o f lan
guage (i.e., the descriptions of consistencies and regularities in the general rein
forcem ent practices o f a verbal com m unity).

Again, any given set of responses, such as those constitu ting  a logical dis
course, may be considered rule-characterized or rule-follow ing depending on 
the nature o f the controlling variables. A student of logic may consult the rules 
of deductivc inference to draw  a conclusion from  a set o f prem ises; yet an 
experienced logician may derive conclusions from  prem ises m uch in the same 
w ay that the experienced poet thinks in a particu lar poetic  m eter (Skinner, 
1957b, p. 422). In fact, it is highly probable that logical verbal behavior emerges 
or develops in the norm al course o f hum an developm ent under processes simi
lar to those in the developm ent o f verbal behavior in general (e.g., Inhelder 
& Piaget, 1958, 1969).

D ed u ctiv e  R eason in g

In the  traditional language o f logicians, it is possible to arrange propositions 
in such a m anner that the conclusion is necessarily true, given prem ises that 
are true. That is, given an arrangem ent o f p ropositions tha t m ay be said to 
co rrespond  to  an actual state o f affairs, a concluding p roposition  can be fo r
m ulated  tha t also corresponds to  the particu lar state o f affairs. The form  o f 
such arrangem ents these p ropositions m ust take are characterized  by the fo r
mal rules of logic, sometimes called the rules of deductive inference. Behavioral- 
ly restated , patterns o f verbal response form s may consistently  produce 
effective behavior on the part o f the  listener (i.e., acceptance of em ission of
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effective conclusions). The rules o f deductive inference describe the patterns 
o f behavior that have a high probability  of reinforcem ent. As a subset o f the 
rules of logicality, these rules are verbal responses that tact the relations among 
behavioral events of em itting prem ises and em itting and accepting conclusions 
(i.e., verbal reasoning).

To illustrate, consider three ways that logicians describe the relations am ong 
propositions: conjunction, disjunction, and implication. A conjunction is a com 
bination  o f tw o propositions. The verbal response “ an d ” functions to  con 
nect tw o responses that may just as easily have been  em itted separately (e.g., 
“ It is Friday, and I am w riting” ). The emission o f tw o propositions connected  
in such a m anner constitutes a m ore com plex propositional response, if only 
for the effect it has on the listener. If a listener accepts any tw o simple p ro p o 
sitions, it is m ost probable that a conjunctive p roposition  (i.e., the tw o simple 
propositions connected  by the response “ and” ) w ill be accepted. This is the 
deductive inference rule called conjunction. Alternatively, if a listener accepts 
a conjunctive proposition , the behavior of em itting any one of the conjuncts 
w ill m ost likely be accepted. This is the rule o f simplification.

T w o propositions are said to be disjuncted w hen  they are connected  by the 
response “ o r” (e.g., “ Either class has been canceled, or I’m in the w rong 
ro o m ” ). If a disjunctive p roposition  is accepted as a prem ise, and if a second 
prem ise negating one of the disjuncts is also accepted, it is m ost probable that 
a conclusion in the form  of the o ther disjunct w ill be accepted. This is the 
rule o f disjunctive syllogism. A cceptance of the prem ises “ Class has been can
celed, or I’m in the w rong  ro o m ” and “ I’m no t in the w rong ro o m ” facili
tates the acceptance or emission of the conclusion, “ Class has been canceled .”

A nother pa tte rn  of behavior is described in the deductive rule called addi
tion . Any single true p roposition  may be disjunctively connected  to any o ther 
p roposition . This pattern  o f behavior may no t occur very often in ordinary  
discourse. According to Braine (1978), “ Ifp  is already established, there is no 
reason to w ant to  infer the w eaker statem ent, p  o r q, w hich suggests doubt 
about p ” (p. 14). It may be true tha t anyone w ho accepts the sim ple p roposi
tion will also accept the disjunctive proposition  (although it is an em pirical 
issue), but it is unclear w hat function such a pa tte rn  of verbal behavior m ight 
have.

An im plication is ano ther case o f tw o simple propositions connected  by an 
additional verbal response. The responses that make this connection  take var
ious form s, such as “ If . . . , then  . . . ” or “ im plies.” This kind o f p roposition  
may function  as a tact o f intraverbal relations, such as class inclusion (e.g., 
“ If you have a cat, then  you have a p e t” ) or defin ition  (e.g., “ If one o f the 
angles is 90 degrees, then it is a right triangle” ). It may also tact a contingency 
(e.g., “ If you are late, then  I’ll leave w ithout y o u ” ) or a causal relation (e.g., 
“ C om bustion implies the presence of oxygen” ). If a listener accepts such a 
p roposition , and if the listener further accepts a sim ple proposition  that con
stitu tes the antecedent of the im plication, it is m ost probable that the listener 
w ill accept the simple proposition  that constitutes the consequent o f the im 
plication . This is the rule of m odus ponens. A cceptance of the proposition
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that com bustion implies oxygen and tha t com bustion  is p resen t facilitates the 
acceptance of the p roposition  that oxygen is present. Alternatively, if a listener 
acccpts an im plication and fu rth er accepts a p ro p o sitio n  negating the conse
quent, it is m ost probable tha t the listener w ill accept a conclusion negating 
the antecedent. This is the ru le o f m o d u s tollens. A cceptance of the prem ises 
that com bustion implies oxygen and tha t oxygen is no t p resen t w ill facilitate 
the acceptance of the conclusion tha t com bustion  is n o t p resent.

O ther rules of deductive inference (e,g., hypo thetica l syllogism, De M or
gan’s theorem , exportation) may be described in a sim ilar m anner. A person  
reasons deductively w hen  the  emission o f p ropositions corresponds to these 
formal rules of logic. Again, deductive reasoning is n o t necessarily an instance 
o f rule-governed behavior. An ind iv idual’s behavior m ay be partially  under 
the con tro l o f verbal stim uli constitu ting  these rules. “ Rules o f evidence in 
a court o f  law  restrict the verbal behavior o f w itnesses, the rules o f chess re 
strict the m ovem ents of the pieces, logical rules have a com parable effect on  
the logician” (Skinner, 1957b, p. 423). H ow ever, evidence o f rule follow ing 
is not required. The reasoning is deductive simply if the behavior can be charac
terized o r described by these rules.

In d u ctive  R eason in g

We have suggested that rules o f deductive inference are descriptions o f re in 
forcem ent contingencies for effective sequences of p roposition  u tterances. 
Premises can be constructed  and arranged in w ays tha t may enhance the ac
ceptability o f a conclusion but do no t correspond  to  the  rules o f deductive 
inference. This kind of verbal behavior may be called inductive reasoning. We 
do not argue for a functional distinction betw een inductive and deductive pa t
terns of verbal behavior. The distinction originated in the  writings o f logicians, 
but from  a behavioral perspective, the d istinction  seem s topographical in na
ture. Behavior is called deductive reasoning sim ply if it can be related to  the 
rules o f deductive inference, w hether legitim ate o r fallacious. A lthough logi
cians find the definition o f inductive reasoning difficult, behavior is generally 
labeled as inductive if it leads to conclusions tha t are only  probably  true. In 
o ther w ords, inductive reasoning is no t defined in term s o f a set of form al 
rules. There are consistencies in the pattern s of behavior called inductive 
reasoning, and these consistencies may be described as rules from  a behavioris
tic perspective.

Consider, for example, J. S. Mill’s (1843/1973) methods of inductive infer
ence. Mill maintained that there are some consistencies in the way one dis
covers and demonstrates causal relations in scientific investigation. If one 
observes a common variable in several otherwise disparate circumstances, that 
variable may be inferred to be the cause, or effect, of the phenom enon under 
investigation. This is Mill’s Method of Agreement. If a number of people all 
exhibit some similar disease symptomatology and these people have no com 
mon history except a deficit of fresh fruit and vegetables in their diet, it might 
be inferred that the lack of fresh fruit and vegetables is a cause of their illness.
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Mill’s M ethod of D ifferences m ay be considered in a sim ilar m anner. If an 
even t occurs in the presence o f som e o ther event, and never in its absence, 
it may be inferred tha t the tw o events are causally related. This kind of causal
ity may be m ore w idely acccptcd as necessary conditionality. Com bustion may 
occur in the  presence of oxygen (as well as additional necessary conditions), 
bu t never in the absence o f it.

A nother inductive practice is reasoning by analogy. A num ber of events, 
objects, or circumstances are described as having a num ber of com m on p ro p e r
ties or characteristics. If several o f these events, objects, o r circum stances have 
an additional com m on characteristic, it is inferred by analogy that the remaining 
circum stances also have the additional characteristic. For exam ple, if John , 
Bob, and Paula are all graduates o f  the same school and have all attained satis
fying careers, and Jane is also a graduate of that school, w e m ay conclude that 
Jane is likely to a tta in  a satisfying career. This kind of reasoning may be the 
result o f the behavioral phenom enon  of stim ulus generalization. If verbal 
responses are re inforced in the presence of a particular discrim inative stim u
lus, o ther stim uli that have physical characteristics in com m on w ith the dis
crim inative stim ulus may also con tro l similar verbal responding.

O ther pa tterns o f verbal behavior in w hich prem ises affect the  acceptabili
ty o f conclusions are described as logical fallacies. It is com m on for the af
firm ed consequent of an im plication to increase the acceptability o f an affirmed 
an tecedent as a conclusion. Logicians call this pa ttern  o f discourse illic it m o 
dus ponens. For instance, “ If it rained last night, then  the  ground  will be w et 
this m orning. It d id  not rain  last night, therefore the g round  is no t w e t.”

A lthough these patterns do no t correspond to the rules o f deductive infer
ence, they may occasionally, if n o t frequently, p roduce  reinforcem ent (i.e., 
effective behavior of accepting the conclusion). These patterns o f behavior 
are considered to be cases o f fallacious reasoning, although som etim es w hat 
superficially appears to be a case o f illicit modus ponens (or tollens) is actually 
deductively  legitimate. For exam ple, denying the an tecedent or affirm ing the 
consequent of an im plication that functions as a definitional tact is deductive
ly valid (e.g., “ If 90 degrees, th en  right angle” ).

Mill’s m ethods, analogical reasoning, and some o f the deductive fallacies 
are exam ples of verbal behavior patterns that may have a high probability  o f 
reinforcem ent. The legitimacy o f inductively derived conclusions, in term s of 
correspondence  w ith  actual states of affairs, has been an epistem ological con
troversy  since the time of Hume (1748/1955). The probability  that such con 
clusions are accepted by a listener and the effects of various propositional 
m anipulations on  that probability  are empirical issues suitable fo r experim en
tal psychology.

If a pa tte rn  of behavior produces m ore reinforcem ent than o ther patterns, 
w e may expect tha t pa tte rn  to be of greater strength than  o th e r pa tterns in 
th e  reperto ire  of an individual. T he behavior is explained or justified by refer
ence to  the reinforcem ent process that maintains the behavior. To say tha t 
deductive reasoning is justified by the rules of deductive inference m ay m ean 
nothing m ore than that the behavior is adequately reinforced in the verbal com 
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m unity, and the rules o f inference describe th e  re in fo rcem en t contingencies. 
If patterns o f inductive reasoning are  sim ilarly m ain tained  by the verbal com 
m unity, they are similarly justified. W e m ay call this justification  psychologi
cal ra ther than  logical.

In o ther w ords, the psychological justification  o f behavior lies in  an under
standing of reinforcem ent contingencies. The reinforcem ent contingencies for 
inductive behavior have been stud ied  in the  co n tex t o f generalization. In fact, 
“ inductive inference” and “ in d u c tio n ” are expressions that have been used 
traditionally  to describe the same p h enom ena  tha t w e n o w  call generalization 
from experience or stimulus generalization. C onsider Mill’s observation, “ The 
child, w ho having burn t his fingers, avoids to  thrust them  again in to  the fire, 
has reasoned or inferred, though he has never though t o f the general maxim, 
Fire bu rns” (1843/1973, p. 188). Skinner (1953) described it in behavioristic 
language: “ The spread of effect to  o th e r stim uli is called generalization o r in 
duction” (p. 132). Finally, Sidman (I960) explicitly  stated, “ Induction  is a be
havioral process. . . . W hether or no t w e m ake an inductive inference, and 
the degree o f tenacity to  w hich w e cling to  tha t inference, w ill depend  upon 
our behavioral history (experience)” (p. 59).

The patterns of nonverbal behavior tha t m ay be called inductive reasoning 
or inference are the same patterns tha t are explained in the body o f know ledge 
constituting the science of behavior. Skinner (1957b) p roposed  tha t verbal be
havior be analyzed in the same m anner as nonverbal behavior, and there is 
no reason to  account fo r verbal inductive reasoning in any o ther way. The 
present analysis extends this approach to the deductive patterns that have been 
the subject o f traditional logical investigation.

SUMMARY

An analysis of verbal reasoning and logical verbal behavior begins w ith an anal
ysis of the proposition. Stating propositions involves em itting verbal responses 
that are related as tacts to their env ironm ental circum stances and to  typical 
relations betw een similar circum stances and verbal behavior in general. This 
kind o f verbal behavior m ay be considered effective if it produces reinforcing 
consequences, such as acceptance by a listener.

Some propositions may be rendered  m ore acceptable to a listener w hen they 
accom pany other, m ore readily acceptable p ropositions called prem ises. Ver
bal reasoning involves altering the probability  that conclusions will be accept
ed or em itted by em itting and m anipulating  prem ises. Any consistencies in 
patterns of reasoning that have high probabilities o f re inforcem ent may be 
described by a set of contingencies tha t m ay be called the rules o f logicality. 
Behavior that corresponds to such rules, bu t is not necessarily under the con
tro l of verbal descriptions o f the  contingencies, has a high probability  of 
producing reinforcem ent.

One subset of the rules of logicality is the set o f rules of deductive infer
ence. It is said that correspondence to  these rules guarantees the tru th  of con-



172 READING 11

elusions given the truth o f prem ises. The rules may describe patterns of reason
ing that have a high probability  o f being accepted by a listener. There are no 
form al rules of inductive inference, bu t consistencies in  pa tterns o f inductive 
reasoning can be described and related to basic princip les of behavior. C on
sistencies in the reinforcem ent practices for verbal inductive reasoning rem ain 
a topic for behavior analysis.

An experim ental analysis o f the verbal behavior involve in logic and reason
ing may uncover functional relations that will enhance a p e rso n ’s effective
ness w ith  regard to th e  reinforcing environm ent. Some o f the relevant 
behavioral issues have already been raised. How does logicality develop in the 
hum an repertoire? H ow  do propositions develop or em erge from  sim ple tacts 
and intraverbals? W hat factors contro l the acceptance o f the prem ises o f a log
ical discourse? How w ell do the rules of deductive inference describe the  b e 
havioral effects of deductive reasoning? W hat are the variables that affect the  
acccptance (or emission) o f inductive conclusions? These are only a few  of 
the questions that the science o f behavior must address in  the study o f reason 
ing and logical verbal behavior.



R E A D I N G  T W E L V E

On the Relation Between  
Generalization and Generality

The astute student o f behavioral psychology m ay have noticed the term s gener
alization and generality share the  sam e stem  w ord . At first glance, this rela
tion  may appear simple enough—both have som ething to  do w ith  the 
“ generalness” o f environm ental con tro l over behavior, generalization refer
ring to a particular behavioral process and generality referring  to  one k ind o f 
characteristic o f behavioral data. H ow ever, the  re lation  betw een  these tw o 
ubiquitous term s is m ore com plex and subtle than this, and h o w  w ell w e u n 
derstand this relation has im portant and pervasive consequences fo r our science 
and our technology. The purpose  of this reading is to  exam ine these term s 
and the ir relation  to one ano ther so as to  im prove progress to w ard  a m ore 
m ature science and m ore effective technology.

Stimulus generalization and response generalization are re la ted  bu t differ
en t behavioral processes (Sidman, I960). Stimulus generalization  refers only 
to  the  fact that w hen responses are re inforced  in the  presence o f one stim u
lus, they may also occur (although possibly w ith lesser frequency) to o ther 
similar but different stimuli. Response generalization adds that w ith such a train
ing history, similar but different responses m ay be evoked by the stimulus previ
ously paired  w ith  reinforcem ent. These b rie f descriptions are m ore fully 
developed in m any sources, and their explanation is relatively well understood 
(M ackintosh, 1977; Rilling, 1977; Terrace, 1966).

T hese tw o effects o f differential re inforcem ent are understandably  im por
tan t in  applied sciences. T herapeutic efforts are of little value if the ir effects 
are exhibited only under a single set o f stim ulus conditions o r in the  presence 
o f a single stim ulus, such as the  therapist o r experim enter. In the  in terest o f 
bo th  effectiveness as well as efficiency, it is im perative that behavioral changes 
p roduced  under special training conditions often  also occur u nder non tra in 
ing circum stances.

This is the goal w ith  w hich behavior m odifiers have long been preoccupied .

1 7 3
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H ow ever, an uncritical use of term inology and a general m isunderstanding of 
behavior processes has led to  a serious m isin terpretation  of the problem . The 
term  generalization is o ften  used as a shorthand  for the phrase stim ulus gener
alization or as an incom plete reference to both  stim ulus and response gener
alization. These are only m inor m atters, how ever, com pared to  the m ore 
serious e rro r o f using generalization as a catch-all descrip tion  and explanation  
of any appropriate change occurring in a nontraining setting. This kind of usage 
is m isleading in that it suggests tha t a single phenom enon  is at w ork  w hen  ac
tually a num ber of different phenom ena need to be described, explained, and 
contro lled . The consequences o f this problem  pervade our understanding of 
behavioral change in nontraining settings and thus our efforts to engineer such 
changes successfully.

The assum ption that obtaining generalization is the essence of the challenge 
is a serious underestim ation of the task o f behavioral control that must be faced. 
To the ex ten t that training procedures have established som e degree o f stim u
lus contro l, it is indeed im portan t to  so design m odification  efforts in other 
settings tha t the utility of this con tro l over responding is maxim ized in a ther
apeutic d irection. But even this is an inadequate perspective. It is necessary 
to design the  training procedure  from  the beginning in such a way tha t stim u
lus con tro l is created in training settings that will have m axim um  behavioral 
influence in nontraining settings (Baer, Wolf, & Risley, 1968). For example, 
in an elem entary school setting, w e might take pains to  establish o ther chil
dren as discrim inative stimuli for appropriate behavior instead o f the 
hom eroom  teacher. W hen the child was in o ther classes, w e w ould  no t lose 
control of the hom eroom  teacher but w ould possibly benefit from the influence 
o f the continued  presence o f o ther children  setting the  occasion for app rop ri
ate behavior (Johnston & Johnston , 1972).

H ow ever, carefully designing procedures to optim ize the contribu tions of 
stim ulus and response generalization w ould hardly exhaust our reperto ire  of 
tactics for getting the subject to behave in a desirable w ay in nontrain ing  set
tings. O ur successes w ill be m ore frequent w hen  w e realize that maximizing 
behavioral influence in such settings requires careful consideration  o f all be
havioral principles and processes. We are expecting too  m uch from  the 
phenom ena o f stimulus and response generalization under the conditions of 
a nontrain ing  setting (regardless o f how  well our training p rocedures are 
designed to  facilitate generalization) if w e think that it is robust enough to main
tain  or produce desired responding in the face of a different set o f env iron
m ental stim uli. A lthough this m ight on occasion be the case, m ore often, 
appropria te  behavior change in nontrain ing  settings w ill require im plem ent
ing a som ew hat different set of therapeutic conditions, preferably m ore closely 
approxim ating the natural characteristics of the untam pered-w ith environm ent 
w ith  less in terference from the therap ist (e.g., Risley, 1968; Risley & Wolf, 
1967).

This burden cannot be placed on the back of generalization alone. Behavioral 
p rac titioners m ust consider extending the initial behavior change to o ther set
tings as a necessary and integral part o f the overall project, W'hich m ust receive



GENERALIZATION AND GENERALITY 1 75

the same care and a tten tion  in environm ental design and  arrangem ent as is 
given to the setting and behavior o f p rim ary  in terest—though  perhaps w ith  
the different goal o f less artificial sources o f con tro l (Baer et al., 1968).

At this point, how ever, w e are no longer talking only about generalization. 
Stimulus and response generalization are only tw o  o f th e  m any w eapons in 
our arsenal tha t can be used to extend initial training to  o th e r responses and 
circum stances. All o f the o ther princip les o f behavior tha t w ere used to  m od i
fy responding in the  first place m ust be a pa rt o f the m odification  efforts u n 
der any o ther conditions o f interest. D escribing or explaining such changes 
solely as generalization is incorrect. Indeed, the applied lite ra tu re  rarely p ro 
vides em pirical evidence that generalization is the behavioral process at w ork  
w hen  changes in target responding are observed in non tra in ing  settings. Nor 
does it seem that the m ore general term  transfer is necessary or adequate. Ever 
since T horndike (1903) talked about the  identical elem ents theo ry  o f transfer, 
it has m erely been a less popu lar synonym  for generalization.

In fact, there does no t appear to be a d istinct phenom ena, effect, or process 
to describe, and there  is a danger in any sum m ary term  th a t disguises the ac tu 
al principles at w ork. It is simply that the behavior m odifier’s job is no t finished 
until the subject is behaving appropriately  in all o f the desired  settings. It is 
only an apparent m isunderstanding o f tha t task that seem s to  necessitate a dis
tinct characterization. Instead o f referring to how  generalization  or transfer 
was or was no t obtained, w e should describe the exact p rocedures (and their 
rationale in behavioral principles) by w hich  environm ental con tro l was ar
ranged in the necessary settings of in terest (prim ary and secondary) and the 
results that w ere forthcom ing. Even the traditional d is tinction  betw een  tra in 
ing and nontrain ing settings is som ew hat m isleading in tha t it encourages the 
view that variables are m anipulated only  up to a certa in  po in t, and then  the 
behavior m odifier stops and hopes tha t fu rther changes occur. If behavioral 
change in som e setting is o f any in terest (even secondary), perhaps it should 
not be considered a nontrain ing setting.

This perspective may have stem m ed from  the dangerous belief that, by p ro 
ducing behavioral change, the individual has som ehow  been changed and that 
it is this changed person  w ho goes in to  o ther settings. It m ust be rem em bered 
that w e do no t change or contro l the ind iv idual’s behavior—the environm ent 
does. We only contro l the environm ent, and its influence on  the behavior o f the 
individual must be continuing. At no p o in t does behavior becom e perm anen t
ly self-supporting o r independen t of environm ental con tro l (Skinner, 1953).

Of course this is n o t to deny that, eventually, no fu rther artificial m anipula
tions m ay be needed in a p ro jec t to p roduce appropria te  responding  in all 
desired settings. But to  describe that fact as the result o f the  process o f gener
alization is to ignore the m any o ther processes o f env ironm ental con tro l that 
may contribute to such a result, such as (a) the nature o f  the response class 
originally selected for m odification, o r (b) the  contingencies o f re inforcem ent 
that w ere arranged, or (c) the  contingencies for that response class tha t exist 
in o ther settings, o r (d) uncontrolled  behavioral changes tha t indirectly  result 
from  treatm ent.
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It can also be argued tha t this w hole perspective surrounding generaliza
tion  is dangerously close to  a m entalistic concept m asquerading in behavioral 
raim ent. This view  of generalization subtly forces our use of it as a hypotheti
cal cognitive process, m uch like retention , for exam ple. The sam e philosophi
cal/m ethodological argum ents w e w ould quickly raise regarding retention  ap
ply exactly to the  use of generalization criticized here.

Some o f these problem s o f perspective and strategy are epitom ized by a re
cent article by Stokes and Baer (1977). Their paper is mainly addressed to 
elucidating a num ber of general tactics from  the applied literature for p roduc
ing desired responding  in nontrain ing settings. A lthough these may indeed in
clude useful p rocedures, the general approach taken in the articlc exemplifies 
the  problem s posed here. For exam ple, they are explicit about their defini
tional position.

The notion of generalization developed here is an essentially pragmatic one; it 
does not closely follow the traditional conceptualizations (Keller & Schoenfeld, 
1950; Skinner, 1953). In many ways, this discussion will sidestep much of the 
controversy concerning terminology. Generalization will be considered to be the 
occurrence of relevant behavior under different, nontraining conditions (i.e., 
across subjects, settings, people, behaviors, and/or time) without the scheduling 
of the same events in those conditions as had been scheduled in the training con
ditions. Thus, generalization may be claimed when some extra manipulations are 
necessary, but their cost or extent is clearly less than that of the direct interven
tion. (p. 350)

Thus, generalization is in tentionally  defined in conflict w ith its formal and 
standard use in the field to include behavior changes that are certainly the result 
o f o ther behavioral processes. This kind o f term inological slippage betw een 
our science and our technology may have pervasive and enduring consequences 
that make maintaining sym biotic relations difficult. This usage discourages any 
understanding o f the behavioral processes that are at w ork in training and non
training settings and encourages a technological literature m ore in a bag-of- 
tricks style than  in a behav io r-analy tic  style. A lthough there is no question 
that w e need to develop procedures for obtaining desired responding in set
tings o f secondary  interest w ith  a m inim um  expenditure of resources, it is im 
p o rtan t to understand  that progress tow ard  this goal will be facilitated by the 
proper description and an empirical understanding o f the variables and process
es that are at w ork  in such efforts.

This overdependence on generalization as a m eans of getting behavioral 
changes in nontrain ing  settings o r in explaining such changes if they occur 
seems, at least in part, to result from  an inadequate understanding  of the ques
tions tha t are actually being raised w hen we ask how  to  ex tend  initial changes 
or how  successful changes in nontraining settings w ere produced . The issue 
is, no t so m uch how  to get “ generalization,” but how  to arrange con tro l over 
different environm ental conditions that result in desired influences on behavior. 
This in turn  becomes the larger question of w hat are the environm ental sources 
o f contro l, and for both the behavior analyst and the behavior modifier, this
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is a question  o f generality. W hen w e ask h o w  w e are going to  get Johnny  to 
behave in the second-period class as w e have so carefully tra ined  him  to do 
in his hom eroom  class, w e are asking about generality. W hen w e w ant to know  
why he did indeed show  hom eroom  treatm ent effects in the th ird-period class, 
w here w e did nothing, but w hy  he continues to be a disaster in the  second- 
period class, w e are asking about generality. W hen w e use the  sam e p ro ce 
dures w ith  Jane but see no changes in her behavior in  the th ird -period  class, 
we will again be asking about generality.

G enerality  refers to  universality or replicability. It m ay be form ally defined 
as the characteristic o f num erical data o r verbal in terpre tations o f  data that 
dcscribcs som e m eaning o r rclcvance (effect) beyond  the circum stances o f its 
origin. It m ust be distinguished from  the concern  for reliability o f effect, w hich 
simply raises the question, “ If I repeat certa in  procedures, w ill I ge t the same 
result?” A broad statem ent o f the  question raised by generality is, “ If I take 
part o r all o f the procedures tha t p roduced  a result and  apply them  under c ir
cum stances that are in som e degree different, w ill I get the sam e kind o f ef
fect?” (see Strategies a n d  Tactics, chap ter 13). This form al defin ition  is still 
insufficient, how ever. There are a num ber o f distinguishable emphases in m ean
ing that can be described. These differences concern  the  kinds o f inform ation  
about generality tha t are the object o f experim ental efforts. These meanings 
are no t always easy to  delineate clearly, and the  usual process o f experim enta
tion provides inform ation on a num ber o f dim ensions o f generality sim ultane
ously, although particular manipulations can be directed at specific dim ensions 
of interest.

In o rder to understand  these various dim ensions o f generality, it is helpful 
to realize that they include dim ensions, across w hich w e investigate the gener
ality o f functional relations betw een  variations in a subject’s responding and 
the experim ental environm ent; these in add ition  to dim ensions concerning 
aspects o f the generality of functional relations that w e w ant to clarify. In o ther 
w ords, the difference is betw een “ generality  across” versus “ generality  o f ,” 
and in any experim ental instance, em phasis m ay be on  one type o f  dim ension 
or the o ther, if no t both.

Figure 12.1 dcpicts this d istinction  and the  various meanings o f  general
ity. G enerality across species is obviously im portan t w hen  the entire spectrum  
of behavioral research is considered. Subject generality has to  do  w ith  the 
representativeness of a finding across subjects and is less im portan t than  it 
might seem. As Sidman (I960) exhaustively po in ted  out, this usually has n o th 
ing to  do w ith  the size o f a group o f subjects; the distribution o f som e quan-

Generality

Across Of

Species Subjects Responses Settings Variables Methods Processes

FIG. 12.1. Dimensions of generality.
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titative aspect of the data in  the population  is actually of little im portance. 
However, if the same kind or type of orderliness occurs w idely am ong individu
als in the popu la tion  as a result o f som e procedure, w c w ould  say that the 
finding has great subject generality. Wc can also exam ine the generality o f a 
functional relation  across response classes in the same (or different) subject(s), 
just as w e may be in terested  in the generality of a finding across different 
settings.

In exam ining generality across these dim ensions, w e are also unavoidably 
probing the  generality o f certain  o ther dim ensions. W e can subdivide these 
meanings as having prim arily to  do w ith  the independent variable (generality 
o f variables and m ethods) o r the dependen t variable (generality of processes). 
It must be pointed  out, how ever, that it is possible to fractionate both  categories 
fu rther if desired. For exam ple, w e could exam ine the generality o f any num 
ber of data characteristics o r w e could investigate particular param eters of some 
variable in a search for generality. W hatever the particular interest, how ever, 
w e are alw ays assessing the generality o f bo th  sides of a functional relation. 
We can look at variables and m ethods only through their associated effect, 
and a behavioral process cannot be studied independently  o f its env ironm en
tal determ inants.

Process genera lity  refers to  either the generality of the interaction o f differ
ent variables that w e m ight call a behavioral process (such as ex tinc tion  or the 
generality o f a w ide range o f quantitative values of a single variable (such as 
FI values). M ethodological genera lity  refers to the replicability of the effects 
o f p rocedures or techniques, usually of environm ental con tro l over behavior, 
such as the  tim e-out p rocedure. G enerality o f  variables  is at the base o f all 
o th e r types. Here w e are talking about the universality of effect o f a variable 
o r class o f variables, such as in term ittency of reinforcem ent.

Both the researcher and practitioner are really asking about generality w hen 
they ask how  to  extend behavioral changes from  one setting to another. In 
particular, m ost o f the tim e w e are interested in the generality o f m ethods and, 
ultim ately, of variables. For exam ple, in asking how  to  get the  same effects 
in Situation B that we p roduced  in Situation A, w e are actually asking particu 
lar questions about the generality of that m ethod o f environm ental con tro l 
and about the  generality o f the arrangem ent of the different variables w hich 
constitu te  th a t control. For exam ple, in the case of tim e out, these m ight be 
the typical questions.

• Will tim e out produce the same effects in o ther situations?
• W hat variations of the procedure will continue to reproduce those effects?
• W hat variables that are crucial in tim e-out can be used in a different way 

to yield the same effect?
• W'hat elem ents of the tim e-out procedure can be om itted  w hile still re 

taining its effectiveness?
• W hat variables of all those used are minimally necessary to  p roduce  the 

sam e effect in Situation B?
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It is our understanding  o f how  the effect in  Situation A w as p ro d u ced  tha t 
will provide the answ ers for Situation B; this has to do  w ith  th e  tho roughness 
of our analysis and understanding o f the  p rocedures and the ir elem ents w e 
use—that is, their generality. If ou r know ledge is such tha t w e are confiden t 
about the generality  o f m ethods o f env ironm ental con tro l and  their co m p o 
nent variables, the question  o f how  to  ex tend  o r  m aintain a behavioral change 
becomes a m uch easier one. Instead o f m aking educated  guesses about p ro p er 
techniques and their likely effects, or reaching in to  a bag o f tricks for a p ro ce 
dure that may no t be applicable, w e w ill increasingly be able to  select confi
dently w ith relative precision  the p rocedures th a t w ill yield m axim um  effect 
w ith minimum artificial environm ental arrangem ent in any setting o f interest.

This perspective seem s to be m ore than  slightly at variance w ith  prevailing 
attitudes and practices in our field. H ow can w e am eliorate this situation? W hat 
must be our research strategies? A catalog of inadequately rcplicated techniques 
(the com ponents of w hich  have no t been  analyzed), each o f w hich  w orked  
at least once for the investigator w ho published  it, may ho ld  the appearance 
of an interw oven and established literature, bu t it w ill p rove  to be a disap
pointing facade that does not live up to its seem ing utility. Investigators m ust 
concurrently w ork to  conduct bo th  applied and  laboratory  research specifi
cally designed to establish and ex tend  the generality  o f the various aspects o f 
such variables and techniques (including p rocedures for m axim izing the ef
fects of the processes o f  stimulus and response generalization). This generali
ty is not necessarily a natural ou tg row th  o f any accum ulation o f studies. It 
m ust be a strong them e of the research in an area, and it m ust be the central 
focus of at least som e carefully and skilled investigators w ho can specifically 
design programs that will w eave together the  results o f m any independen t 
studies.

This style of research may be described as them atic, in con trast to the m ore 
demonstration-style, one-shot p rojects that are independent o f the needs o f 
an area of behavioral literature (see Strategies a n d  Tactics, Box 3-2). A thcm atic 
study may be conducted  in any setting w ith  any kind o f subject; w hat makes 
the study them atic is the nature o f the question  addressed and the m ethodo 
logical style that characterizes the effort. The them atic study fits into a care
fully predeterm ined position  in a larger research  program . T he program  may 
be directed by one person  or a collaborative team ; it may exist as a program  
only through the com plem entary, but independen t, efforts o f investigators 
whose contact is primarily through the formal channels of com m unication (e.g., 
journals, etc.). The questions addressed by them atic research are less likely 
to result from a local opportun ity  to w ork  in a certa in  setting or w ith  a p artic 
ular population than from  the specific needs o f a coheren t and relatively in
tegrated, yet still incom plete, literature.

In thematic behavioral research, w hen there is a conflict betw een experim en
tal and service goals, the scales are tipped in favor of science so that the resulting 
interpretations may be unam biguous. Thus, it m ay be expected  tha t the quali
ty of m ethodological decisions may be som ew hat higher in them atic efforts 
than in the m ore independent dem onstration  studies. After all, in thcm atic
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research, the goal is not just to  change behavior but to determ ine its con tro l
ling variables in a relatively detailed m anner. This in no w ay vitiates service 
delivery. The w ork  of Lovaas and his colleagues w ith autistic children is an 
excellent exam ple of them atic applied behavior analysis that is successful from  
bo th  analytical and service perspectives. Furtherm ore, the studies review ed 
by Lovaas and Newsom (1976) comprising the language training literature w ith 
normal, autistic and retarded populations describe an area of investigation large
ly resulting from  them atic research efforts that have n o t com prom ised ther
apeutic or educational responsibilities.

It may indeed be that, w h en  w e w ork  for behavioral changes in one set
ting, w e happily  observe changes appearing in o ther settings w ithou t any spe
cial efforts on our part. H ow ever, m ost often we will have to d irect specific 
efforts at such changes, and the seemingly simple questions w e then  ask must 
be seen as a part of a larger and m ore im portan t range of questions about 
generality.



R E A D I N G  T H I R T E E N

Within Subject Versus 
Between Groups Designs: 
Comparing Experimental 

Outcomes

INTRODUCTION

The experim ental literature concerning p rocedures fo r addressing severe be
havior disorders in developm entally disabled individuals em bodies tw o  fun
dam entally d ifferent approaches to designing and conducting  experim ents. 
These are know n as w ith in  subject and betw een g roups designs, although this 
d ichotom y oversimplifies the m ethodological variations represen ted . The 
differences betw een these tw o approaches to asking and answering experim en
tal questions present serious difficulties w hen  w e try  to review  this literature 
in o rder to  sum m arize its findings.

In o rder to  fully appreciate this problem , w e m ust first review  som e o f the 
key features o f each m ethodological approach; how  each approach asks ex
perim ental questions, arranges comparisons, addresses the need for experim en
tal contro l, analyzes data, and draw s inferences offers som e clear contrasts. 
This w ill facilitate consideration  o f w hat these differences m ean for how  w e 
evaluate literatures tha t em body bo th  approaches.

Before beginning this comparison, how ever, it is im portant to be clear about 
the  nature o f the subject m atter under study. Perhaps the m ost fundam ental 
fact about behavior fo r present purposes is that it is a biological phenom enon. 
Behavior results from  an interactive cond ition  betw een  individual organism s 
and their environm ents'. It is therefore a phenom enon  that occurs only  at the 
level of the individual. This means tha t it is only at this level tha t w e can see 
the o rderly  relations tha t are the focus o f our interest. A nother im portan t fea
ture o f behavior is tha t the organ ism -env ironm ent in teractions tha t result in 
behavior occur th rough  time. The m ethodological consequence o f this fact 
is tha t w e have to  m easure behavior over tim e in o rder to  see the effects of 
these in teractions clearly.

In considering these attributes, it is im portan t to  rem em ber tha t as w ith  all
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sciences, w e need to adapt our experim ental m ethods to the characteristics 
o f the phenom enon , ra ther than forcing the subject m atter to  fit our research 
m ethods. This m eans that the w ays that we study behavior m ust accom m o
date these and o ther characteristics if we are going to  learn how  these organ- 
ism -env ironm ent in teractions w ork  and w hat factors can influence them . We 
might also rem em ber that the behavioral technology now  w idely used in m any 
settings has em erged from  a basic and applied experim ental literature tha t ex
emplifies this m ethodological p rio rity .

EXPERIMENTAL QUESTIONS

The divergent m ethods o f w ith in  subject and betw een groups designs begin 
w ith  the strategic issue o f experim ental questions. At least formally, the curi
osities of these approaches are quite different. The generic experim ental ques
tion in betw een-groups designs is, technically, no t a question at all. The logical 
device required  to lend the practice of hypothesis testing the illusion of deduc
tive validity precludes an official question. Instead, w e make the p red iction  
that there will be no difference betw een experim ental and contro l groups. 
W hen the data reveal that w e are w rong (with an acceptable risk o f being w rong 
by chance), w e gratefully tu rn  to  the alternative hypothesis, w hich suggests 
the  independen t variable as the m ost likely (or, at least, the m ost preferred) 
cu lp rit—our real interest all along.

Putting aside the logical legerdem ain, the generic form  o f the experim ental 
question hidden in this practice asks “ Is there a difference (between experim en
tal and con tro l groups)?” O f course, there is alm ost always a difference, the 
only issue is w hether there is enough of a difference to satisfy the requirem ents 
o f the underly ing  m athem atical m odel used to answ er the question. W hat is 
m ore revealing, how ever, is w hat is n o t  being asked. This approach does not 
address the  size o f the difference or the nature o f its o ther characteristics, 
although statisticians are always trying to find new  ways o f m anipulating the 
data to  perm it us to say w hatever w e w ant to say. Remember, how ever, that 
all that w e can officially conclude is that there is, or is not, a difference be
tw een  experim ental and con tro l groups, yielding the possibility of causal as
signm ent to  the independent variable.

In contrast, w ith in  subject designs are guided by a rather different type of 
question. Its m ost generic form  asks “ W hat are the relations betw een the  in
dependen t variable and the  dependen t variable?” This is an especially open 
and searching curiosity. It encourages an approach to m easurem ent and de
sign tha t accom m odates an in terest in learning anything and everything about 
the effects o f the independent variables on the dependent variable, and it does 
no t im pose any particular con ten t or form on the answers that data m ight sup
po rt. Satisfactory answ ers m ight describe any and all aspects of the relation
ship.
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The essence-of experim ental design lies in  h o w  w e bring the  behavior o f sub
jects into contact w ith various cond itions so as to  p erm it com parisons w hose 
data will suggest inferences tha t answ er the experim ental question. W ithin- 
subject designs expose subjects individually  to  a sequence o f conditions. Each 

. subject’s contact w ith a condition  occurs across a series o f successive sessions. 
W hat determ ines the num ber of sessions under each cond ition  is evidence that 
the subject’s behavior is, to the ex ten t deem ed necessary, under con tro l of 
the variables defining that condition , so tha t a clear and  com plete p ictu re  of 
its effects is available. W hen behavior is u nder con tro l o f  a constant set o f con
ditions, and reasonable a tten tion  is paid to con tro lling  extraneous variables, 
it usually exhibits relatively good stability across repea ted  sessions. These de
cisions are m ade individually for each subject because d ifferen t subjects react 
to the same condition  in varied ways.

An im portant feature of this approach  is tha t it perm its the  target behavior 
to have sufficient contact w ith  each cond ition  being com pared  to prov ide  a 
com plete and clear picture o f the effects o f each on behavior; how ever, the 
value of this evidence is lost if it is no t done individually  for each subject. 
Although there is no limit on  the num ber o f  subjects em ployed, it is typical 
to  use only a small num ber in com parison  to  betw een  groups designs. As w e 
see, the success o f this approach partly  depends on how  w ell the researcher 
uses the opportun ity  it offers to establish good experim ental control, but the 
result can be a database that clearly and fully describes how  the behavior of 
each subject was affected by each condition .

The betw een groups approach could n o t be m ore different. First, each sub
ject typically experiences only one o f th e  cond itions being com pared. This 
means that comparisons of the effects of independent variable and control con
ditions m ust involve different subjects, w h ich  confounds the  effects o f trea t
m ent conditions w ith betw een subject variability. The seriousness o f this 
problem  depends, not on the num ber o f subjects involved, but the nature o f 
the data being com pared. W ithin subject designs som etim es make com pari
sons betw een subjects as well, but they do so using individual data collected 
in a repeated  m easures style. As its nam e prom ises, be tw een  groups designs 
make this com parison using grouped data represen ting  as few  as one observa
tion per subject.

Second, although the betw een-groups approach  typically exposes each sub
ject to  a single condition  as little as once, o r no  m ore than  a few  times, it does 
this for a relatively large num ber of subjects. Although this tactic provides m any 
observations, it does no t p rov ide the sam e pictu re  o f behavior as does repea t
ed w ith in  subject observations. Recall that behavior is a continuous phenom e
non, w hich means that w e can be sure o f seeing a clear picture of h o w  a 
particular response class is influenced by som e cond ition  only if w e expose 
the behavior to the condition for a sufficient am ount of time. A betw een groups 
design does n o t usually prov ide enough tim e to ob tain  such a picture. This

EXPERIMENTAL COMPARISONS
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m eans that each sub ject’s values may represent different points on  his o r her 
individual function , or even the influence o f extraneous variables. In  o ther 
w ords, d ifferent subjects usually take different am ounts o f tim e to  respond  
to a new  condition . A single observation may catch one subject early in this 
transition  but ano ther after the  transition is com plete. The result is tw o  differ
ent p ictures o f the effects o f the condition, and averaging these p ictures does 
not make it any clearer.

EXPERIMENTAL CONTROL

One of the m ore subtle but im portan t differences betw een these tw o research 
styles lies in their approach  to experim ental control. The em phasis on  ob tain
ing a clear and com plete p icture o f responding under each condition separately 
for each subject, w hich  typifies w ith in  subject designs, encourages efforts to  
im prove con tro l by each condition , w hile minimizing con tro l by extraneous 
variables. The fact that each subject’s behavior is repeatedly m easured under 
each supposedly constan t condition  perm its behavioral variability to serve as 
a m etric of the degree o f con tro l attained. This allows the  researcher to  im
prove con tro l over the variables defining the condition o r to identify and hold 
constant or elim inate ex traneous influences, all while assessing the  effects of 
these m anipulations on each subject’s behavior.

This approach to experim ental control enhances the generality of the study’s 
conclusions. In o ther w ords, im provem ents in the consistency and purity  w ith 
w hich data reflect the effects of the conditions being com pared im prove the 
chances that the independent-dependent variable relations identified by the 
conclusions will be true and will hold up w hen examined or used under differ
ent circum stances.

Although the need for experim ental control may not be view ed any less seri
ously in betw een  groups designs, its approach to experim ental com parisons 
does no t facilitate efforts to  assess or im prove it. The relatively few m easure
m ents o f each subject’s behavior under its assigned condition  does no t perm it 
the researcher to  assess the  clarity w ith w hich each con d itio n ’s effects are 
represen ted  by the data. N either does it provide very m uch of an opportun ity  
to  im prove the  purity  of each condition’s contro l over each subject’s respond
ing.. O ther considerations aside, this means that the data from  each subject in 
a betw een groups design may be likely to represent more extraneous influences 
than for each subject in a w ith in  subjects design.

Instead o f controlling its sources before the fact, the betw een groups ap
proach  instead emphasizes controlling variability statistically after the fact. 
These tw o tactics do no t have the same effects on the database, how ever. 
W hereas efforts to contro l actual variability lead to im proved con tro l over 
responding and, thus, a clearer picture of the effects of each condition, statisti
cal m anipulation  of variable data cannot rem ove the influences already 
represen ted  in the data. W hat is manipulated is how  we talk about the  data, 
a tactic that is less likely to  enhance generality.
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A lthough the  num ber o f observations available for analysis can be sim ilar for 
the tw o  approaches, the databases rep resen t d ifferent in form ation , n o tw ith 
standing the  fact that in bo th  cases each raw  value m ight rep resen t an obser
vation  o f the  behavior o f a single subject. By collecting a large num ber o f 
observations on each o f a relatively sm all num ber o f subjects, w ith in  subject 
designs allow  the researcher to exam ine individually  each sub ject’s response 
to  each o f the conditions being com pared . The m ost basic form  o f  analysis 
usually involves displaying m easures o f each subject’s responding  graphically 
as a function  o f time. Given the degree o f con tro l tha t can usually be attained, 
the clarity of this picture is often convincing w ithou t further analysis (although 
this analytical technique is no t as obvious as m any assume and requires som e 
training). If a m ore w ide-ranging exam ination  is w arran ted , it m ay involve ad 
ditional graphic representations o f particu lar features o f the data o r descrip
tive statistical m anipulations (e.g., see Tukey, 1977).

T he strength  of this approach to  data analysis lies less w ith  its reliance on 
graphic displays than w ith  the nature  o f the data being displayed. Data that 
rep resen t the  repeated perform ance o f individual subjects under each o f the 
cond itions being com pared, their clarity  having been enhanced  by tactics that 
augm ent experim ental contro l, w ill tend  to  be revealing as long as their han 
dling respects the fundamental qualities of the subject m atter. As in o ther natural 
sciences, graphic displays serve nicely m ost o f the tim e, in spite o f  the fact 
that this analytical style does no t em body rigid inferential rules.

As is w ell know n to  every studen t in the social sciences, the analysis o f 
betw een-groups data is conducted  in accordance w ith  elaborate m athem ati
cal and interpretive models, collectively called inferential statistics. For present 
purposes, the  m ost im portan t feature o f this approach is tha t it typically in
volves analyzing grouped data representing  the  com bined perform ance of all 
subjects exposed to each condition being com pared. This feature alone guaran
tees that orderly  and revealing relations betw een the independent variable con
ditions and behavior (an intraorganism ic phenom enon) w ill be difficult if not 
im possible to  detect. Such an achievem ent is quite different from  show ing 
statistical significance, and it is p robably  a m ore  difficult goal to  attain. Fur
therm ore, although the size of the groups being com pared m ay affect the likeli
hood o f getting a significant result, it has nothing to do w ith discovering orderly 
relations betw een  environm ental variables and behavior.

DATA ANALYSIS

EXPERIMENTAL INFERENCES

W ith betw een  groups designs, the process of reaching experim ental conclu
sions is fully scripted by the m athem atical m odel used to analyze the data. The 
rules o f the statistical test being used generally require that, if the  difference 
is significant, the researcher must conclude that the independen t variable was 
responsible. This inferential practice is relatively autom atic, although argu
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ments about the possible ro le o f extraneous influences can alw ays vitiate any 
inferences.

One of the  problem s w ith  this w ay o f determ ining experim ental inferences 
is that its focus is too  narrow  in at least three ways. First, as the  tail end of 
the hypothesis testing game, it strongly encourages researchers to  m ake con 
clusions ou t o f the original predictions, hardly a p ractice that stim ulates open 
and critical thinking. In o th e r w ords, by virtually requiring sim ple causal in
ferences about the role o f the independen t variable, a tten tion  is n o t adequate
ly given to  o ther aspects o f its effects on  the behavior o f subjects.

Second, in spite of this com plaint, conclusions about the  size o f the effect, 
its o ther characteristics, o r the effects o f o ther variables may n o t always be 
logically p erm itted  by the inferential m odel underlying such statistics. O n the 
o ther hand, this may be just as well because various features of betw een groups 
designs m ay preclude the kind o f database that w ould  suppo rt m ore varied 
or analytical inferences.

Third, by licensing causal statem ents upon receipt of a significant statistic, 
this inferential approach does n o t encourage atten tion  to  the m any details of 
experim ental m ethod or to extraneous factors tha t might bear on  the conclu
sions. As a result of this relatively restricted  focus, the form al outcom es of 
betw een groups designs tend  to  be overly simplistic statem ents to  the  effect 
tha t “ Effect Y was caused by Procedure X ,” unqualified by detailed  descrip
tion  of the  characteristics o f the relation or by m ethodological lim itations on 
its generality.

Again in stark contrast, conclusions draw n from  w ith in  subject designs are 
guided by no  inferential m odel or set of rigid rules. Researchers are free to 
describe w hatever findings they think the data support, focusing on w hatever 
features o f the  data seem revealing, w ithout regard for the ir original expecta
tions or curiosities. The only counsel for this exercise lies in a few  overarch
ing strategies: (a) Inferences should be about the relations betw een  physical 
(environm ental) variables and the  behavior of individual subjects, (b) Infer
ences are appropriate  only w hen  the data result from  m ethodological p rac
tices that accom m odate the fundam ental characteristics o f behavior, and (c) 
Inferences should be supported  by data approxim ating functional relations. 
The effect o f these strategies and their supporting tactics is to focus atten tion  
on w hat th e  experim ent really says about how  variables influence behavior, 
even if the findings are unanticipated or contrary to  those originally suspected.

Although this dependence on informal and flexible strategies instead of rigid 
inferential rules bothers those in .the social sciences w ho do no t understand 
this approach  very well, it is just as effective in the  study o f behavior as it is 
in the natural sciences w hen  studying o ther natural phenom ena. U nfortunate
ly, the h istory  that social scientists have w ith inferential statistics seems to have 
led to the belief that a quantitative decision rule is required to  certify the tru th 
fulness o f a study’s results. Inferential statistical traditions have, in effect, 
replaced th e  goal of accurate conclusions w ith  the concept o f statistical sig
nificance. As a result, som e attem pt to append various form s o f inferential 
statistical analysis to w ith in  subject designs in a m isguided attem pt to avoid
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the subjectivity that is an inherent and valuable aspect o f experim ental m ethod  
in the natural sciences.

One of the most im portant criteria fo r the  effectiveness of any design con 
cerns the extent to which it leads to  conclusions that have good  generality. 
Generality is a much misunderstood topic tha t is at the roo t o f inferential differ
ences betw een within-subject and  be tw een  groups designs. G enerality  is a 
characteristic of data that describes som e m eaning o r relevance beyond  the 
circum stances of its origin. The generality  o f  a p roposed  relation  betw een  in 
dependent and dependent variables should  be distinguished from  its reliabili
ty, w hich simply raises the question, “ If I repeat certain  p rocedures, w ill I get 
the same result?” Generality asks “ If I take a certain  result and apply the proce
dures that produced it under circum stances th a t are som ew hat different, w ill 
I get the same effect?” (Strategies a n d  T actics , chap ter 13; Reading 12).

Questions about generality may have varying emphases, w hich, because w e 
are always asking about a relation, necessarily  have tw o parts. For exam ple, 
we may ask about the generality o f  variables, m ethods, or processes across 
subjects, behaviors, settings, or species. Perhaps the most im portant poin t about 
w hat generality is asking, how ever, is th a t th e  answ ers m ust describe varia
bles that influence the relation under study . In o ther w ords, ou r know ledge 
about the extent to which w e m ay expect ou r findings to  ho ld  under o ther 
circumstances depends entirely on  the h o w  w ell w e understand  the variables 
required to  produce the effect and variables that can m odulate it. This kind 
of inform ation can only be obtained from  experim entally identifying such vari
ables and determining their im pact on  th e  relation  o f interest.

The tw o experimental styles under considera tion  manifest fundam entally  
different perspectives on generality. W ith in  subject designs clearly approach 
generality as an experimental obligation. From  the form  of the experim ental 
question to the style of data analysis and inference, there is a pervasive focus 
on obtaining a behaviorally m eaningful and accurate picture of in d ep en d e n t- 
dependent variable relations, so tha t the re  w ill be a sound foundation  for 
the subsequent search for their generality. It is understood  that the generality  
of a study’s findings may be con tem plated  in  its discussion section, but that 
it can be clarified only with additional research. Because the ability to  p redict 
the conditions under which the  relation  o f in terest w ill and will not hold  d e 
pends on how  well contributing variables arc understood, w ithin subject studies 
tend to  focus less on making pred ictions and  m ore  on  identifying controlling 
variables.

Between-groups designs approach  generality  as an actuarial or sam pling is
sue. By misperceiving the question to  be h o w  w ell the sam ple represents the 
population (Fisher, 1935), the prim ary in terest tends to lie in the  generality 
o f a finding across subjects, w hich ignores th e  m any o ther facets of generality 
that are important. (In within subject designs, generality across subjects is often 
a relatively m inor interest because it is m ore im portan t to first understand con 
trolling variables and because subject generality  is usually so easily obtained 
once the relation is well understood.) U nfortunately , the m ethods required  
to pursue this actuarial perspective tend  to  p reclude obtaining a clear p icture
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of the relations of interest in the first place. For example, the use o f large num 
bers o f subjects and grouped  data prevents or discourages various practices 
that are necessary to study behavior effectively.

A pproaching generality as a question of how  w ell the sam ple represents the 
popu la tion  has o ther problem s as well. For instance, it m isstates ou r real scien
tific interest, w hich is in th e  individual, not the population . Because behavior 
is a phenom enon  that only  occurs w ith  individuals, it is at this level that w e 
m ust identify sources o f con tro l and pursue generality. O f course, as Fisher 
(1935) recognized, it is im proper to  generalize from  the sample to  the  individu
al, but w e fail to realize tha t our apparent interest in the universality  o f a find
ing in the population  confuses the scientific obligation to  establish generality 
(w hich requires understanding sources of control) w ith  our p ractical desire 
tha t the  finding be broadly  applicable. In fact, because behavior is an intraor- 
ganism ic phenom enon, w e should only be in terested in generality  to  the in 
dividual. W hen w e understand  w hat controls an effect at this level, w e are 
in a m uch better position  to  assess w hether the effect w ill be obtained  for any 
particu lar individual o r class of individuals.

A related problem  is that this actuarial perspective discourages a crucial dis
tinc tion  betw een assessing versus obtaining generality. The drive to  assess the 
generality  of each experim en t’s conclusions on the spo t by m aking it a sam 
pling question m isdirects a tten tion  away from  the far m ore im portan t m atter 
o f determ ining the kind of evidence that will be required to establish the gener
alness o f the findings. W hether a study’s results will ho ld  under o ther cond i
tions is entirely a function  of the extent to w hich the variables responsible 
fo r the  effect are presen t under those conditions. K nowing this requires dis
covering those variables (see Reading 9).

EVALUATING EXPERIMENTAL LITERATURES

This b rief com parison of the general features of w ith in  subject and  betw een 
groups designs tha t d irectly  concern  experim ental inferences should  make it 
clear tha t there are few  similarities and that the differences are fundam ental. 
In fact, the differences are such tha t it may be said that they result in qualita
tively different subject m atters. W hen well done, the p rocedures o f w ithin- 
subject designs preserve the pure characteristics of behavior, uncontam inated  
by intersubject variability. In contrast, the best betw een groups design p rac
tices obfuscate the represen tation  o f behavior in various ways, particularly  by 
m ixing intersubject variability w ith  treatm ent-induced variability.

W'e argued that this difference in the subject m atter rep resen ted  by the ex
perim ental database constitutes a distinction betw een pure versus quasi- 
behavioral research (see Reading 9). Pure behavioral research results from  
experim ents embodying methodological practices that preserve the fundam en
tal qualities of behavior in undisturbed and uncontam inated form. W hat is pure 
is the representation o f the com plete array of fundam ental qualities o f behavior 
in the experim ental data. Quasi-behavioral research results from  experim ents
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w hose data originated w ith  observations o f behavior bu t w hose m ethods p re 
ven t the data from  representing  b ehav io r’s fundam ental qualities fully and 
w ithout distortion or contam ination. The prefix denotes the potential problem ; 
such research seems to be about behavior a lthough it is n o t, according to  the 
standards o f the phenom enon  itself.

W here does all o f this leave us w h en  w e are try ing to m ake sense o f a lite ra
ture that includes bo th  kinds o f approaches? Frankly, w e are left in a very 
difficult position. It is clear tha t if w e are looking at, fo r instance, tw o  studies 
tha t address the same in terven tion  p rocedu re  for reducing  self-injurious be
havior, one using a w ith in  subject design and the o th e r a be tw een  groups de
sign, it w ould  be im proper sim ply to  v iew  their conclusions as equivalently  
believable. Furtherm ore, the inheren t superio rity  o f w ithin-subject designs for 
the study o f behavior certainly does n o t m ean that any instance o f this ap
p roach  autom atically leads to true o r even m ore  accurate conclusions than  its 
com petito r. As w ith  betw een  groups designs, there  are p len ty  of in ferio r ex
amples, and it is hardly the case that conclusions from a m ethodologically w eak 
w ith in  subject study are better than  conclusions from  any betw een  groups 
study; and it is never the case tha t they  are better than nothing. T here are no 
guarantees here. Sound exam ples o f this approach  can alw ays lead to e rro n e 
ous findings.

In review ing a m ethodologically  diverse literature, it is im portan t to  un 
derstand  that the “ stu d y ” is n o t the  p ro p e r unit o f inferential analysis. The 
only  m eaningful unit is the functional relation. One study m ay contribu te  no 
such instances, w hereas ano ther m ay suggest m ore than one. Thus, review ing 
a literature is no t a dem ocratic process o f tallying the num ber o f studies tha t 
do and do no t support a particular finding, regardless of each ’s m ethods. Even 
the m ore sophisticated  version o f this practice  rep resen ted  by meta-analysis 
canno t help here  (although it can be a useful technique fo r evaluating certa in  
kinds of literature). The reason is that there is no straightforw ard w ay to equate 
o r com pare the findings from  these tw o  types o f designs. Because o f d iffer
ences in how  these designs collect and treat raw  behavioral observations, their 
findings cannot be simply in tegrated . T hey do no t usually ask the sam e ques
tion, and they clearly do not represent and com pare behavioral data in equiva
lently  in terpre table forms.

This certainly does not m ean that w e should  ignore th e  findings from  be- 
tw een-groups designs w hen trying to understand w hat a literature tells us about 
behavior o r m ethods for contro lling  behavior. Just because this approach  is 
generally ill-suited to  the sm dy o f behavior certainly does no t m ean th a t the 
conclusions o f each instance are necessarily w rong. It is n o t unusual fo r an 
especially strong effect to override the  w eaknesses o f experim ental m ethods, 
w he ther betw een  groups or w ith in  subject. But how  do w e know  w hen  this 
is o r is no t the case? H ow  do  w e decide, w hen  review ing a literature, w h ich  
s tudy ’s findings are true and w hich  are false, o r at least indeterm inate?

This is no t a challenge only encoun tered  w hen  com paring the results of 
differing m ethodological approaches. The custom ary practice o f evaluating any 
s tudy ’s conclusions by critically assessing the  details of its m ethods rem ains
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a necessary technique. Following the argum ents briefly outlined here, this will 
place betw een  groups designs in a w eak position  relative to w ith in  subject de
signs. Flowever, w e then  look at th e  pattern  of findings across those studies 
w hose m ethods are at least m inim ally appropriate to  the  subject m atter and 
the question. At this po in t, the results o f the studies rem aining w ill still no t 
be w eighed equally. Because o f detailed  differences in their m ethods and the 
data, som e will be given m ore credence and others, less. Only then  can we 
a ttem pt som e kind o f sum m ary o f the literatu re’s findings, assuming that 
enough studies rem ain to  justify general conclusions.

This process of evaluating scientific literatures is necessarily idiosyncratic 
to  each review er, a fact tha t som e m ight see as a disadvantage. It may be ar
gued, how ever, that this is often a valuable characteristic o f scientific reviews. 
Only som e kinds o f literatures w arran t the form alities o f meta-analysis, and 
they are n o t usually found  in the social sciences. T he fact that each review er 
brings a certain  po in t o f view  to  th e  task of review ing a literature should be 
considered a strength  of the trad itional (nonquantitative) approach. Although 
this perspective or bias m ay encourage differences am ong the conclusions of 
different review ers o f the  same literature, w ho is to  say w hich are correct? 
W hy should  d ifferent review ers com e to the same conclusions anyway? As
sessing any stu d y ’s findings is alw ays a subjective process, even if a statistical 
decision rule is used. A lthough science strives for accuracy in all things, it gets 
there by a series of judgm ents, an observation that Bertrand Russell noted  w hen 
he said, “ Although this m ay seem  a paradox, all exact science is dom inated 
by the idea o f app rox im ation .”

In sum m ary, although w e m ight like a simple p rocedure  fo r reviewing 
m ethodologically  diverse literatures that guarantees accuracy, there is none. 
W hat w e should  w ant, instead, is be tter literatures. W hat w e should  be doing 
is im proving our experim ental m ethods, w hich will require us to  im prove the 
way tha t w e th ink about and pursue behavior as a scientific subject m atter. 
W hat w e m ust do is to  becom e m ore concerned w ith learning about behavior 
than follow ing m ethodological traditions. Anyone w ith  graduate training in 
the social sciences has had no less than a year’s w o rth  o f formal instruction 
in inferential statistical approaches to  conceptualizing and conducting research, 
and often  m uch m ore. W hat p ro p o rtio n  have had an equivalent am ount of 
training in w ith in  subject m ethods or exploratory data analysis?

Some concluding caveats are required. First, these argum ents concern  only 
research in w hich  the goal is to  learn about the relations betw een behavior 
and o ther variables. W hen behavioral data are used to  answ er o th e r kinds of 
questions, such as the adm inistrative aspects of one procedure versus another, 
betw een groups designs may be quite appropriate. (This poin t m ust be consid
ered in light of som e im portan t issues concerning research w hose goal is to 
com pare tw o procedures, how ever. See Reading 9 for further discussion.)

Second, these critical comments about between groups designs and inferen
tial statistics should be interpreted in a narrow context. These methods do 
w'hat they do perfectly well, and it is important that all students of behavior 
learn at least their basics. Although they are often misapplied in psychological
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” research, a useful role rem ains, a lthough it shou ld  be a m uch  sm aller ro le that 
present trad itions suggest. They are inheren tly  inapp rop ria te  fo r th e  task of 
learning about behavior in any fundam ental or analytical sense, how ever, and 
the ir dom inance in psychology lies at the ro o t o f p sycho logy ’s continuing 
failure to build  an im portan tly  useful science and technology .
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